Lorentz Center - Explicit Algebraic Number Theory: NWO-OTKA workshop
  Current Workshop  |   Overview   Back  |   Home   |   Search   |     

    Explicit Algebraic Number Theory: NWO-OTKA workshop

Friday September 27th

Friday September 27th

10.15-11.15      Rene Schoof - Applications of class field theory


11.45-12.45      Capi Corrales - The support problem


14.00-15.00      Bas Edixhoven - Complex multiplication and Galois action


15.30-16.30      Juergen Klueners - Constructive Galois theory

                        wine and cheese


Monday September 30th

10.15-11.15      Andrzej Schinzel - On power residues


11.45-12.10      Bart de Smit - Arithmetically equivalent fields of small degree

12.15-12.40      Ronald Cramer - Optimal black box sharing over arbitrary abelian groups


14.30-15.30      Jean-Marc Couveignes - Modular correspondences and computing the canonical lift


16.00-16.25      Ronald van Luijk - Rational points on surfaces

16.30-16.55      Richard Groenewegen - Torelli for number fields

17.00-17.25      Pieter Moree - On the distribution of the order and index of (g mod p) over residue classes


Tuesday October 1st

10.15-11.05      Michael Pohst - On factoring polynomials over global function fields


11.25-11.50      Peter Olajos - Power integral basis in orders of composite fields

11.55-12.20      Szabolcs Tengely - On the equation F(x)=G(y)

12.25-12.50      Alf van der Poorten - Periodic continued fractions and torsion on the jacobians of hyperelliptic curves


14.30-15.30      Guenter Lettl - On solving families of Thue-equations


16.00-16.25      Istvan Gaal - An application of inhomogeneous Thue equations to resultant type equations

16.30-16.55      Istvan Jarasi - Calculating the `small' solutions of resultant type equations

17.00-17.25      Istvan Pink - On the differences between polynomial values and perfect powers


Wednesday October 2nd

10.15-11.15      Yuri Bilu - Catalan's conjecture (after Mihailescu)


11.45-12.10      Lajos Hajdu - On the diophantine equation $n(n+d)\hdots (n+(k-1)d)=by^l$

12.15-12.40      Csaba Rakaczki - On the equation $x(x-1)\hdots (x-(m-1))=\lambda y(y-1)\hdots(y-(n-1))+l$


14.30-15.30      Hendrik Lenstra - Primality testing using Gauss periods


16.00-16.25      Wolfgang Schmid - On the set of integral solutions of X^2 - dY^2 = 1  in number fields

16.30-16.55      Herman te Riele - New class number computations and the Cohen-Lenstra heuristics

17.00-17.25      Christiaan van de Woestijne - Quadratic forms over finite fields