Lorentz Center - Mathematical understanding of complex patterns in the life sciences
  Current Workshop  |   Overview   Back  |   Home   |   Search   |     

    Mathematical understanding of complex patterns in the life sciences

Mathematical understanding of complex patterns

Tuesday March 18th 2003

9.20-9.30:            M. Mimura


9.30-10.10:          M. Matsushita

                              Pattern formation due to reproduction and movement of bacterial cells –Experiments and modelling

10.10-10.40:       Coffee

10.40-11.20:       M. Howard

                              Pattern formation inside bacteria: positional information, fluctuations and optimisation

11.20-2.30          Lunch

2.30-3.10:            C. Muratov

                              An asymptotic study of the inductive pattern formation mechanism inDrosophila egg development

3.10-3.40:            Tea

3.40-4.20:            X. Chen

                              A free boundary problem modelling the growth of tumor

4.20-5.00:            R. Schätzle

                              Solutions of the Stefan problem with Gibbs-Thomson law without global minimization


Wednesday March 19th 2003

9.30-10.10:          N. Shigesada I

                              Modeling spatial spread of invading species - Effects of long-distancedispersal

10.10-10.40:       Coffee

10.40-11.20:       H. Matano

                              Estimate of the speed of travelling waves in heterogeneous media

11.20-3.00          Lunch

3.00-4.00:            Presentation of the posters

                              J.B. van den Berg, E. Crooks, M. Guedda, D. HartmannD. Iron, F. Issard-Roch, T. Miura, M. Nagataki,I. Ohnishi, G. Prokert, R. Weidenfeld.

4.00-5.40:            Tea and Poster Session

6.00:                     Dinner in the Oort

7.30:                     J. Prost (Ehrenfestii Colloquium in the Oort building)


Thursday March 20th 2003

9.30-10.10:          N. Shigesada II

                              Modeling biological invasions into fragmented environments

10.10-10.40:       Coffee

10.40-11.20:       H. Berestycki

                              Mathematical aspects of front propagation and biological invasion models in periodic media

11.20-3.00          Lunch

3.00-3.40:            H. Fraaije

                              From Polymersomes to Organelles

3.40-4.10:            Tea

4.10-4.50:            E. Yanagida

                              Irregular behavior of solutions for Fisher's equation

4.50-5.30:            F. Merle

                              Non existence of type II blow-up for supercritical heat equations


Friday March 21st 2003

9.30-10.10:          N. Shigesada III

                              Recurrent habitat disturbance and species diversity in a multiple-competitive species system

10.10-10.40:       Coffee

10.40-11.20:       O. Diekmann

                              Dynamics of semelparous populations

11.20-2.20:          Lunch

2.20-3.00:            E. Hulata

                              Complexity of neural activity and encoding of information

3.00-3.40:            M. Langlais

                              On some diffusive epidemic problem with age dependence and indirect transmission

3.40-4.20:            H. Zaag

                              A chemotaxis model motivated by angiogenesis

4.20-5.00:            Tea


Monday March 24th 2003

9.30-10.10:          J. Boissonade

                              Self-generation of rythms and forms by chemomecanical processes

10.10-10.40:       Coffee

10.40-11.20:       F. Otto

                              Examples of complex rheology in polymeric liquids

11.20-3.00          Lunch

3.00-3.40:            C.J. Van Duijn

                              Dissolution and precipitation in thin tubes.

3.40-4.10:            Tea

4.10-4.50:            A. Doelman

                              The dynamics of modulated wave trains

4.50-5.30:            H. Ninomiya

                              The diffusion-induced blowup in reaction-diffusion systems


Tuesday March 25th 2003

9.30-10.10:          P. Maini I

                              Mathematical models for biological pattern formation: The role ofgeometry and growth:

                              Part 1: Introduction to the use of mathematical models in biological pattern formation

10.10-10.40:       Coffee

10.40-11.20:       M. Mimura

                              A billiard problem far from equilibrium state

11.20-3.00          Lunch

3.00-3.40:            A. Mochizuki

                              Mathematical modeling for vascular network system in leaves

3.40-4.10:            Tea

4.10-4.50:            J.R. King

                              Mathematical modelling of quorum sensing and tissue penetration during bacterial infections

4.50-5.30:            N. Dancer

                              Mathematical techniques for studying some population models


Wednesday March 26th 2003

9.30-10.10:          P. Maini II

                              Mathematical models for biological pattern formation: The role of geometry and growth:

                              Part 2: How geometry affects patterning - application to butterfly wings

10.10-10.40:       Coffee

10.40-11.20:       A. Goldbeter

                              Mathematical models for cellular rhythms

11.20-3.00          Lunch

3.00-4.00:            Presentation of the posters

                              C. Carrillo, A. Dall'Acqua, C. Dupaix, G. Hek, M. Henry, Y. Oshita, B. Planqué, H. van der Ploeg, J. Raap, N. Valkhoff, M. van Wieren.

4.00-5.00:            Tea and Poster Session


Thursday March 27th 2003

9.30-10.10:          P. Maini III

                              Mathematical models for biological pattern formation: The role of geometry and growth:

                              Part 3: How domain growth affects patterning - application to fish pigmentation patterns and bivalve ligament patterns

10.10-10.40:       Coffee

10.40-11.20:       J. Demongeot

                              Cambium growth and cyto-skeleton formation: role of endogeneous and exogeneous factors like proliferation and gravity

11.20-3.00          Lunch

3.00-3.40:            R. Eymard

                              Finite volume methods for reaction-diffusion problems

3.40-4.20:            H. Brezis

                              How to detect defects

4.20-4.30:            H. Matano: closure

4.30-5.00:            Tea


Titles of the posters:

J.B. van den Berg: Braids and fourth order differential equations

C. Carrillo: Dispersal and Coexistence of Two Species modelled with Integro-Difference

E. Crooks: On the convergence of travelling-front speeds as diffusion vanishes in reaction-diffusion equations with non-convex flux.

A. Dall'Acqua: Brownian Motion and Maximum Principle

C. Dupaix: A finite volume method for reaction-diffusion systems modelling: population dynamics: convergence and numerical simulations

M. Guedda: Similarity solutions to differential equations for boundary-layer approximations in porous media

D. Hartmann: Modelling pattern formation in colonies of Bacilius subtilis

G. Hek and N. Valkhoff: Stabilization by slow diffusion in a real Ginzburg-Landau equation

M. Henry: Two problems arising in the micro-phase separation of diblock copolymers

D. Iron: Destabilisation of Fronts in a Class of Bi-Stable Systems

F. Issard-Roch: Non-local phase-field systems: convergence towards equilibria

T. Miura: The speed of pattern appearence in reaction diffusion system

M. Nagataki: Equation for contact inhibition between cells

I. Ohnishi: A Mathematical aspect of Liesegang phenomena in n-space dimensions

Y. Oshita: Stable patterns with fine structures arising in FitzHugh-Nagumo equations

B. Planqué: A contact problem from the theory of buckling rods

H. Van der Ploeg: Periodic Patterns in the Gierer-Meinhardt Model

G. Prokert: Stokes flow with variable and degenerate surface tension coefficient

J. Raap: Ion channel forming

J. Raap: Membrane active peptides

R. Weidenfeld: On a reaction-diffusion system for a population of hunters and farmers

M. Van Wieren: Markovian theory for Kinesin