Critical and Glassy Spin Dynamics in Non-Fermi-Liquid Heavy-Fermion Metals

D. E. MacLaughlin

Department of Physics
University of California
Riverside, California U.S.A.
Behavior of spin fluctuations at low temperatures in non-Fermi-liquid (NFL) f-electron heavy-fermion metals.
Behavior of spin fluctuations at low temperatures in \textit{non-Fermi-liquid} (NFL) f-electron heavy-fermion metals.

Muon spin relaxation (μSR):
Behavior of spin fluctuations at low temperatures in \textit{non-Fermi-liquid} (NFL) f-electron heavy-fermion metals.

Muon spin relaxation (μSR):

- the technique,
Behavior of spin fluctuations at low temperatures in non-Fermi-liquid (NFL) f-electron heavy-fermion metals.

Muon spin relaxation (μSR):

- the technique,
- time-field scaling, low-frequency divergences,
Behavior of spin fluctuations at low temperatures in non-Fermi-liquid (NFL) f-electron heavy-fermion metals.

Muon spin relaxation (μSR):

- the technique,
- time-field scaling, low-frequency divergences,
- slow spin dynamics, disorder.

Comparison of muon relaxation with resistivity & specific heat in NFL systems.

Local (single-ion or cluster) vs. cooperative dynamics, critical and (or?) glassy dynamics.

Conclusions and questions.

Behavior of spin fluctuations at low temperatures in non-Fermi-liquid (NFL) f-electron heavy-fermion metals.

Muon spin relaxation (μSR):

- the technique,
- time-field scaling, low-frequency divergences,
- slow spin dynamics, disorder.

Comparison of muon relaxation with resistivity & specific heat in NFL systems.
Behavior of spin fluctuations at low temperatures in non-Fermi-liquid (NFL) f-electron heavy-fermion metals.

Muon spin relaxation (μSR):

- the technique,
- time-field scaling, low-frequency divergences,
- slow spin dynamics, disorder.

Comparison of muon relaxation with resistivity & specific heat in NFL systems.

Local (single-ion or cluster) vs. cooperative dynamics,
Behavior of spin fluctuations at low temperatures in non-Fermi-liquid (NFL) f-electron heavy-fermion metals.

Muon spin relaxation (μSR):

- the technique,
- time-field scaling, low-frequency divergences,
- slow spin dynamics, disorder.

Comparison of muon relaxation with resistivity & specific heat in NFL systems.

Local (single-ion or cluster) vs. cooperative dynamics,
Critical and (or?) glassy dynamics.
Behavior of spin fluctuations at low temperatures in non-Fermi-liquid (NFL) f-electron heavy-fermion metals.

Muon spin relaxation (μSR):

- the technique,
- time-field scaling, low-frequency divergences,
- slow spin dynamics, disorder.

Comparison of muon relaxation with resistivity & specific heat in NFL systems.

Local (single-ion or cluster) vs. cooperative dynamics,

Critical and (or?) glassy dynamics.

Conclusions and questions.

Behavior of spin fluctuations at low temperatures in non-Fermi-liquid (NFL) f-electron heavy-fermion metals.

Muon spin relaxation (μSR):

- the technique,
- time-field scaling, low-frequency divergences,
- slow spin dynamics, disorder.

Comparison of muon relaxation with resistivity & specific heat in NFL systems.

Local (single-ion or cluster) vs. cooperative dynamics,

Critical and (or?) glassy dynamics.

Conclusions and questions.

Breakdown of Fermi liquid paradigm in a number of metals,
Breakdown of Fermi liquid paradigm in a number of metals, including many paramagnetic heavy-fermion f-electron materials (v. Löhneysen 96, Coleman 99, Schofield 99, Bernhoeft 01, Stewart 01, Varma et al. 02, ...).
Breakdown of Fermi liquid paradigm in a number of metals, including many paramagnetic heavy-fermion \(f \)-electron materials (v. Löhneysen 96, Coleman 99, Schofield 99, Bernhoeft 01, Stewart 01, Varma et al. 02, ...).

Attention focused on quantum critical phenomena associated with a \(T = 0 \) phase transition.

Coleman et al. 01
Breakdown of Fermi liquid paradigm in a number of metals, including many paramagnetic heavy-fermion \(f \)-electron materials (v. Löhneysen 96, Coleman 99, Schofield 99, Bernhoeft 01, Stewart 01, Varma et al. 02, ...).

Attention focused on quantum critical phenomena associated with a \(T = 0 \) phase transition.

- Quantum rather than thermal critical fluctuations,
Breakdown of Fermi liquid paradigm in a number of metals, including many paramagnetic heavy-fermion \(f \)-electron materials (v. Löhneysen 96, Coleman 99, Schofield 99, Bernhoeft 01, Stewart 01, Varma et al. 02, ...).

Attention focused on quantum critical phenomena associated with a \(T = 0 \) phase transition.

- Quantum rather than thermal critical fluctuations,
- New low-lying excitations not Fermi-liquid quasiparticles.
Muon Spin Relaxation in NFL metals

Results: in f-electron NFL metals studied to date, low-frequency spin fluctuations at low temperatures are singular [with a (very) low-frequency cutoff] as τ_0; in disordered NFL materials spin fluctuations are slow (enhanced low-frequency spectral weight) and inhomogeneous (broad spatial distributions of coupling strengths and/or fluctuation amplitudes), but cooperative: Form of correlation function is homogeneous, so not a simple distribution of fluctuation rates. Properties suggest glassy dynamical behavior, but no spin freezing for $T < 20 \text{ mK}$.
Muon Spin Relaxation in NFL metals

Results: in \(f \)-electron NFL metals studied to date
Muon Spin Relaxation in NFL metals

Results: in f-electron NFL metals studied to date

- low-frequency spin fluctuations at low temperatures are
 singular [with a (very) low-frequency cutoff] as $\omega \to 0$;
Results: in f-electron NFL metals studied to date

- low-frequency spin fluctuations at low temperatures are *singular* [with a (very) low-frequency cutoff] as $\omega \to 0$;
- In *disordered* NFL materials spin fluctuations are
Muon Spin Relaxation in NFL metals

Results: in f-electron NFL metals studied to date

- low-frequency spin fluctuations at low temperatures are *singular* [with a (very) low-frequency cutoff] as $\omega \rightarrow 0$;
- In *disordered* NFL materials spin fluctuations are
 - *slow* (enhanced low-frequency spectral weight) and
Muon Spin Relaxation in NFL metals

Results: in f-electron NFL metals studied to date

- low-frequency spin fluctuations at low temperatures are *singular* [with a (very) low-frequency cutoff] as $\omega \to 0$;
- In *disordered* NFL materials spin fluctuations are
 - *slow* (enhanced low-frequency spectral weight) and
 - *inhomogeneous* (broad spatial distributions of coupling strengths and/or fluctuation amplitudes), but
Results: in f-electron NFL metals studied to date

- low-frequency spin fluctuations at low temperatures are \textit{singular} [with a (very) low-frequency cutoff] as $\omega \to 0$;
- In \textit{disordered} NFL materials spin fluctuations are
 - \textit{slow} (enhanced low-frequency spectral weight) and
 - \textit{inhomogeneous} (broad spatial distributions of coupling strengths and/or fluctuation amplitudes), but
- \textit{cooperative}:
Muon Spin Relaxation in NFL metals

Results: in f-electron NFL metals studied to date

- low-frequency spin fluctuations at low temperatures are singular [with a (very) low-frequency cutoff] as $\omega \to 0$;
- In disordered NFL materials spin fluctuations are
 - slow (enhanced low-frequency spectral weight) and
 - inhomogeneous (broad spatial distributions of coupling strengths and/or fluctuation amplitudes), but
- cooperative:
 - Form of correlation function is homogeneous, so
Muon Spin Relaxation in NFL metals

Results: in f-electron NFL metals studied to date

- low-frequency spin fluctuations at low temperatures are *singular* [with a (very) low-frequency cutoff] as $\omega \to 0$;
- In *disordered* NFL materials spin fluctuations are
 - *slow* (enhanced low-frequency spectral weight) and
 - *inhomogeneous* (broad spatial distributions of coupling strengths and/or fluctuation amplitudes), but
- *cooperative*:
 - Form of correlation function is *homogeneous*, so
 - *not* a simple distribution of fluctuation rates.
Muon Spin Relaxation in NFL metals

Results: in f-electron NFL metals studied to date

- low-frequency spin fluctuations at low temperatures are *singular* [with a (very) low-frequency cutoff] as $\omega \to 0$;
- In *disordered* NFL materials spin fluctuations are
 - *slow* (enhanced low-frequency spectral weight) and
 - *inhomogeneous* (broad spatial distributions of coupling strengths and/or fluctuation amplitudes), but
- *cooperative*:
 - *Form* of correlation function is *homogeneous*, so
 - *not* a simple distribution of fluctuation rates.
- Properties suggest *glassy* dynamical behavior, but

Leiden – p.4
Muon Spin Relaxation in NFL metals

Results: in f-electron NFL metals studied to date

- low-frequency spin fluctuations at low temperatures are *singular* [with a (very) low-frequency cutoff] as $\omega \to 0$;
- In *disordered* NFL materials spin fluctuations are
 - *slow* (enhanced low-frequency spectral weight) and
 - *inhomogeneous* (broad spatial distributions of coupling strengths and/or fluctuation amplitudes), but
- *cooperative*:
 - *Form* of correlation function is *homogeneous*, so
 - *not* a simple distribution of fluctuation rates.
- Properties suggest *glassy* dynamical behavior, but
- *no* spin freezing for $T \gtrsim 20$ mK.
Longitudinal-field μSR
Longitudinal-field μSR

A spin-polarized muon from a “meson factory” (PSI, TRIUMF, ...) ...

Schematic diagram of longitudinal-field μSR.
Longitudinal-field μSR

A spin-polarized muon from a “meson factory” (PSI, TRIUMF, . . .) . . . is stopped in the sample. A clock is started.

Schematic diagram of longitudinal-field μSR.
Longitudinal-field μSR

A spin-polarized muon from a “meson factory” (PSI, TRIUMF, ...) is stopped in the sample. A clock is started.

Muon β decay

$$\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu.$$

Decay time distributed; average $\approx 2.2 \mu$s. Positron emitted preferentially in direction of muon spin.
Longitudinal-field μSR

A spin-polarized muon from a “meson factory” (PSI, TRIUMF, ...) is stopped in the sample. A clock is started.

Muon β decay

$\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$.

Decay time distributed; average $\approx 2.2 \mu s$. Positron emitted preferentially in direction of muon spin.

Decay time and positron direction are recorded.
Longitudinal-field μSR

A spin-polarized muon from a “meson factory” (PSI, TRIUMF, . . .) . . .

is stopped in the sample. A clock is started.

Muon β decay
\[\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu. \]

Decay time distributed; average ≈ 2.2 μs. Positron emitted preferentially in direction of muon spin.

Decay time and positron direction are recorded. Experiment repeated $\sim 10^7$ times.

Schematic diagram of longitudinal-field μSR.
Obtain time histogram of
(positron asymmetry) \(\propto \)
(muon spin polarization \(P_{\mu} \)).
Obtain time histogram of
(positron asymmetry) \(\propto \)
(muon spin polarization \(P_\mu \)).

\(P_\mu \) relaxes \((\to 0) \) due to local fields at muon sites; dominated by dynamic relaxation due to \(f \)-spin fluctuations.
Obtain time histogram of (positron asymmetry) \(\propto \) (muon spin polarization \(P_\mu \)).

\(P_\mu \) relaxes \((\rightarrow 0) \) due to local fields at muon sites; dominated by *dynamic* relaxation due to \(f \)-spin fluctuations.

Relaxation rate \(\propto \) fluctuation noise power at muon *Zeeman frequency* \(\omega_\mu \).
Obtain time histogram of (positron asymmetry) \propto (muon spin polarization P_μ).

P_μ relaxes ($\rightarrow 0$) due to local fields at muon sites; dominated by dynamic relaxation due to f-spin fluctuations.

Relaxation rate \propto fluctuation noise power at muon Zeeman frequency ω_μ.

Determined by longitudinal field $H \parallel P_\mu$: $\omega_\mu = \gamma_\mu H$.

Extremely low frequency (MHz) spectroscopy. Ideally suited to study extremely low-frequency NFL excitations!
Obtain time histogram of (positron asymmetry) \propto (muon spin polarization P_μ).

P_μ relaxes ($\rightarrow 0$) due to local fields at muon sites; dominated by dynamic relaxation due to f-spin fluctuations.

Relaxation rate \propto fluctuation noise power at muon Zeeman frequency ω_μ.

Determined by longitudinal field $H \parallel P_\mu$: $\omega_\mu = \gamma_\mu H$.

Extremely low frequency (MHz) spectroscopy.
Obtain time histogram of (positron asymmetry) \propto (muon spin polarization P_μ).

P_μ relaxes ($\to 0$) due to local fields at muon sites; dominated by dynamic relaxation due to f-spin fluctuations.

Relaxation rate \propto fluctuation noise power at muon Zeeman frequency ω_μ.

Determined by longitudinal field $H \parallel P_\mu$: $\omega_\mu = \gamma_\mu H$.

Extremely low frequency (MHz) spectroscopy.

Ideally suited to study extremely low-frequency NFL excitations!
Obtain time histogram of (positron asymmetry) \propto (muon spin polarization P_μ).

P_μ relaxes ($\to 0$) due to local fields at muon sites; dominated by dynamic relaxation due to f-spin fluctuations.

Relaxation rate \propto fluctuation noise power at muon Zeeman frequency ω_μ.

Determined by longitudinal field $H \parallel P_\mu$: $\omega_\mu = \gamma_\mu H$.

Extremely low frequency (MHz) spectroscopy.

Ideally suited to study extremely low-frequency NFL excitations!

A local probe—sums over all q.
Sample-average asymmetry relaxation function $\overline{G}(t, H)$ given (in motionally narrowed limit) by
Sample-average asymmetry relaxation function $\overline{G}(t, H)$ given (in motionally narrowed limit) by

$$\overline{G}(t, H) \propto \begin{cases}
\exp[-W(H)t] & \text{(homogeneous)} \\
\int d\mathbf{r} \, \exp[-W(\mathbf{r}, H)t] & \text{(inhomogeneous)}
\end{cases}$$
Sample-average asymmetry relaxation function $\overline{G}(t, H)$ given (in motionally narrowed limit) by

$$\overline{G}(t, H) \propto \left\{ \begin{array}{ll}
\exp[-W(H)t] & \text{(homogeneous)} \\
\int d\mathbf{r} \exp[-W(\mathbf{r}, H)t] & \text{(inhomogeneous)}
\end{array} \right.$$

(Distributed) muon relaxation rate $W(\mathbf{r}, H)$ related to local spin autocorrelation function $q(t) = \langle \mathbf{S}(\mathbf{r}, t) \cdot \mathbf{S}(\mathbf{r}, 0) \rangle$:
Sample-average asymmetry relaxation function \(\overline{G}(t, H) \) given (in motionally narrowed limit) by

\[
\overline{G}(t, H) \propto \begin{cases}
\exp[-W(H)t] & \text{(homogeneous)} \\
\int d\mathbf{r} \exp[-W(\mathbf{r}, H)t] & \text{(inhomogeneous)}
\end{cases}
\]

(Distributed) muon relaxation rate \(W(\mathbf{r}, H) \) related to local spin autocorrelation function \(q(t) = \langle \mathbf{S}(\mathbf{r}, t) \cdot \mathbf{S}(\mathbf{r}, 0) \rangle \):

\[
W(\mathbf{r}, H) \propto \int_0^\infty dt \ q(t) e^{-i \omega_\mu t}, \quad \omega_\mu = \gamma_\mu H.
\]
Sample-average asymmetry relaxation function $\overline{G}(t, H)$ given (in motionally narrowed limit) by

$$\overline{G}(t, H) \propto \left\{ \begin{array}{ll} \exp[-W(H)t] & \text{(homogeneous)} \\ \int d\mathbf{r} \exp[-W(\mathbf{r}, H)t] & \text{(inhomogeneous)} \end{array} \right.$$

(Distributed) muon relaxation rate $W(\mathbf{r}, H)$ related to local spin autocorrelation function $q(t) = \langle \mathbf{S}(\mathbf{r}, t) \cdot \mathbf{S}(\mathbf{r}, 0) \rangle$:

$$W(\mathbf{r}, H) \propto \int_0^{\infty} dt \, q(t)e^{-i\omega_{\mu}t}, \quad \omega_{\mu} = \gamma_{\mu}H.$$

FD theorem \Rightarrow dynamic susceptibility; contact with neutron scattering:
Sample-average asymmetry relaxation function $\overline{G}(t, H)$ given (in motionally narrowed limit) by

$$
\overline{G}(t, H) \propto \begin{cases}
\exp[-W(H)t] & \text{(homogeneous)} \\
\int d\mathbf{r} \exp[-W(\mathbf{r}, H)t] & \text{(inhomogeneous)}
\end{cases}
$$

(Distributed) muon relaxation rate $W(\mathbf{r}, H)$ related to local spin autocorrelation function $q(t) = \langle \mathbf{S}(\mathbf{r}, t) \cdot \mathbf{S}(\mathbf{r}, 0) \rangle$:

$$
W(\mathbf{r}, H) \propto \int_0^\infty dt \, q(t)e^{-i\omega_\mu t}, \quad \omega_\mu = \gamma_\mu H.
$$

FD theorem \Rightarrow dynamic susceptibility; contact with neutron scattering:

$$
W(\mathbf{r}, H) \propto T\chi''(\mathbf{r}, \omega_\mu)/\omega_\mu, \quad \omega_\mu = \gamma_\mu H.
$$
Time-field scaling

Near a critical point (thermal or quantum) expect
$q(t) = \alpha t^\eta$ (scaling form).

Then $W(r; H) = V(r) = V(r; \beta)$, for $\beta > 1$.

Coefficient $V(r)$ spatially distributed but exponent the same for all spins.

Then $G(t; H) / Z = G(t = H)$ (\beta = H).

This is time-field scaling. First seen in LFSR in spin-glass AgMn, T > T_g (Keren et al. 96).

No need to assume any particular form for $G(t)!$
Time-field scaling

Near a critical point (thermal or quantum) expect
\[q(t) = t^{-y} f(t/\tau) \] (scaling form).
Time-field scaling

Near a critical point (thermal or quantum) expect
\(q(t) = t^{-y} f(t/\tau) \) (scaling form).

Then \(W(r, H) = V(r)/\omega_\mu^\alpha, \alpha = 1 - y \), for \(\omega \tau \gg 1 \).
Time-field scaling

Near a critical point (thermal or quantum) expect
\[q(t) = t^{-y} f(t/\tau) \] (scaling form).

Then \[W(r, H) = V(r) / \omega^\alpha, \alpha = 1 - y, \text{ for } \omega \tau \gg 1. \]

Coefficient \(V(r) \) spatially distributed but exponent \(\alpha \) the same for all spins.
Time-field scaling

Near a critical point (thermal or quantum) expect
\[q(t) = t^{-y} f(t/\tau) \] (scaling form).
Then \(W(r, H) = V(r)/\omega_\mu^\alpha, \alpha = 1 - y, \) for \(\omega \tau \gg 1. \)
Coefficient \(V(r) \) spatially distributed but exponent \(\alpha \) the same for all spins.
Then
Time-field scaling

Near a critical point (thermal or quantum) expect
\[q(t) = t^{-y} f(t/\tau) \] (scaling form).

Then \[W(r, H) = V(r)/\omega_\mu^\alpha, \alpha = 1 - y, \text{ for } \omega \tau \gg 1. \]

Coefficient \(V(r) \) spatially distributed but exponent \(\alpha \) the same for all spins.

Then
\[
\overline{G}(t, H) \propto \int dr \exp[-V(r)(t/\omega_\mu^\alpha)]
\]
Time-field scaling

Near a critical point (thermal or quantum) expect
\[q(t) = t^{-y} f(t/\tau) \] (scaling form).

Then \(W(r, H) = V(r)/\omega_\mu^\alpha, \alpha = 1 - y \), for \(\omega \tau \gg 1 \).

Coefficient \(V(r) \) spatially distributed but exponent \(\alpha \) the same
for all spins.

Then
\[
\overline{G}(t, H) \propto \int dr \exp[-V(r)(t/\omega_\mu^\alpha)] \\
= \overline{G}(t/H^\alpha) \quad (\omega_\mu = \gamma_\mu H).
\]
Time-field scaling

Near a critical point (thermal or quantum) expect
\[q(t) = t^{-y} f(t/\tau) \] (scaling form).

Then \[W(\mathbf{r}, H) = V(\mathbf{r})/\omega_\mu^\alpha, \quad \alpha = 1 - y, \quad \text{for } \omega \tau \gg 1. \]

Coefficient \(V(\mathbf{r}) \) spatially distributed but exponent \(\alpha \) the same for all spins.

Then
\[
\overline{G}(t, H) \propto \int d\mathbf{r} \exp[-V(\mathbf{r})(t/\omega_\mu^\alpha)]
\]
\[= \overline{G}(t/H^\alpha) \quad (\omega_\mu = \gamma_\mu H). \]

This is \textit{time-field scaling}. First seen in LF-\(\mu \)SR in spin-glass AgMn, \(T > T_g \) (Keren \textit{et al.} 96).
Time-field scaling

Near a critical point (thermal or quantum) expect
\[q(t) = t^{-y} f(t/\tau) \] (scaling form).

Then \(W(\mathbf{r}, H) = V(\mathbf{r})/\omega_\mu^\alpha, \alpha = 1 - y, \) for \(\omega \tau \gg 1. \)

Coefficient \(V(\mathbf{r}) \) spatially distributed but exponent \(\alpha \) the same for all spins.

Then
\[
\overline{G}(t, H) \propto \int d\mathbf{r} \exp[-V(\mathbf{r})(t/\omega_\mu^\alpha)]
\]

\[= \overline{G}(t/H^\alpha) \quad (\omega_\mu = \gamma_\mu H) . \]

This is *time-field scaling*. First seen in LF-\(\mu\)SR in spin-glass AgMn, \(T > T_g \) (Keren *et al.* 96).

No need to assume any particular form for \(\overline{G}(t)! \)
Time-field scaling in NFL UCu₄Pd
Time-field scaling in NFL UCu$_4$Pd

LF-μSR relaxation functions in UCu$_{5-x}$Pd$_x$, $x = 1.0$ and 1.5 (not shown), obey time-field scaling (DEM et al. 01).

LF-μSR scaling in UCu$_4$Pd (DEM et al. 01, 02).
Time-field scaling in NFL UCu$_4$Pd

LF-μSR relaxation functions in UCu$_{5-x}$Pd$_x$, $x = 1.0$ and 1.5 (not shown), obey time-field scaling (DEM et al. 01). Exponents consistent with $\chi''(\omega)$ from neutron scattering (Aronson et al. 95).

LF-μSR scaling in UCu$_4$Pd (DEM et al. 01, 02).
Time-field scaling in NFL UCu$_4$Pd

LF-μSR relaxation functions in UCu$_{5-x}$Pd$_x$, $x = 1.0$ and 1.5 (not shown), obey time-field scaling (DEM et al. 01).

Exponents consistent with $\chi''(\omega)$ from neutron scattering (Aronson et al. 95).

Observed rates in NFL systems never very large; evidence against f-spin freezing (static moment $\lesssim 10^{-3} \mu_B$).

LF-μSR scaling in UCu$_4$Pd (DEM et al. 01, 02).
Time-field scaling in NFL UCu$_4$Pd

LF-μSR relaxation functions in UCu$_{5-x}$Pd$_x$, $x = 1.0$ and 1.5 (not shown), obey time-field scaling (DEM et al. 01).

Exponents consistent with $\chi''(\omega)$ from neutron scattering (Aronson et al. 95).

Observed rates in NFL systems never very large; evidence against f-spin freezing (static moment $\lesssim 10^{-3} \mu_B$).

LF-μSR scaling in UCu$_4$Pd (DEM et al. 01, 02).
Time-field scaling in NFL UCu$_4$Pd

LF-μSR relaxation functions in UCu$_{5-x}$Pd$_x$, $x = 1.0$ and 1.5 (not shown), obey time-field scaling (DEM et al. 01).

Exponents consistent with $\chi''(\omega)$ from neutron scattering (Aronson et al. 95).

Observed rates in NFL systems never very large; evidence against f-spin freezing (static moment $\lesssim 10^{-3} \mu_B$).

LF-μSR scaling in UCu$_4$Pd (DEM et al. 01, 02).
Comparison between NFL systems
Comparison between NFL systems

LF-μSR relaxation behavior at low temperatures:
Comparison between NFL systems

LF-μSR relaxation behavior at low temperatures:

- CePtSi\textsubscript{1-x}Ge\textsubscript{x},
- UCu\textsubscript{5-x}Pd\textsubscript{x},
- UCu\textsubscript{5-x}Pt\textsubscript{x}*: relaxation *subexponential* (⇒ inhomogeneous) and strong.

*not shown

LF-μSR relaxation functions $G(t)$ at low temperatures in NFL materials (DEM et al. 03).
Comparison between NFL systems

LF-μSR relaxation behavior at low temperatures:

- CePtSi$_{1-x}$Ge$_x$,
 UCu$_{5-x}$Pd$_x$,
 UCu$_{5-x}$Pt$_x$*:
 relaxation *subexponential* (⇒ inhomogeneous) and *strong*.

- CeNi$_2$Ge$_2$, YbRh$_2$Si$_2$, CeCu$_{5.9}$Au$_{0.1}$,*
 Ce(Ru$_{0.5}$Rh$_{0.5}$)$_2$Si$_2$*:
 relaxation nearly *exponential* (⇒ homogeneous) and *much weaker*.

*not shown
LF-μSR, resistivity, and specific heat

Effect of disorder? Compare with residual resistivities $(\rho(0))$.

Materials-dependent differences in fluctuation energy scales? Compare with low-temperature specific heat coefficients $(C(T))$ as measures of these scales. (Choose $T = 1 \text{ K}$.)
LF-\(\mu\)SR, resistivity, and specific heat

Compare LF-\(\mu\)SR parameters with other properties in a number of NFL systems:
LF-μSR, resistivity, and specific heat

Compare LF-μSR parameters with other properties in a number of NFL systems:

- Effect of disorder?
LF-μSR, resistivity, and specific heat

Compare LF-μSR parameters with other properties in a number of NFL systems:

- Effect of disorder?
 Compare with residual resistivities $\rho(0)$.

Leiden – p.11
LF-μSR, resistivity, and specific heat

Compare LF-μSR parameters with other properties in a number of NFL systems:

- Effect of disorder? Compare with residual resistivities $\rho(0)$.
- Materials-dependent differences in fluctuation energy scales?
LF-μSR, resistivity, and specific heat

Compare LF-μSR parameters with other properties in a number of NFL systems:

- Effect of disorder? Compare with residual resistivities $\rho(0)$.
- Materials-dependent differences in fluctuation energy scales? Compare with low-temperature specific heat coefficients $\gamma(T)$ as measures of these scales. (Choose $T = 1$ K.)
• LF-μSR asymmetry data well fit by stretched exponential relaxation function
- LF-μSR asymmetry data well fit by *stretched exponential* relaxation function
 \[\overline{G}(t) = \exp\left[-(\Lambda t)^K\right] \]

LF-μSR relaxation functions \(\overline{G}(t) \) at low temperatures in NFL materials (DEM et al. 03).
• LF-μSR asymmetry data well fit by *stretched exponential* relaxation function
\[
G(t) = \exp[-(\Lambda t)^K]
\]
(Parameterization only; no *ab initio* justification).

LF-μSR relaxation functions \(G(t)\) at low temperatures in NFL materials (DEM *et al.* 03).
- LF-\(\mu\)SR asymmetry data well fit by *stretched exponential* relaxation function
\[G(t) = \exp[-(\Lambda t)^K] \]
(Parameterization only; no *ab initio* justification).

- \(\Lambda^{-1}\) = characteristic \(1/e\) time for relaxation,

LF-\(\mu\)SR relaxation functions \(\overline{G}(t)\) at low temperatures in NFL materials (DEM *et al.* 03).
• LF-\(\mu\)SR asymmetry data well fit by *stretched exponential* relaxation function
\(\overline{G}(t) = \exp[-(\Delta t)^K]\)
(Parameterization only; no *ab initio* justification).

- \(\Lambda^{-1} = \) characteristic \(1/e\) time for relaxation,
- \(K < 1\) measure of spread in rates (broad distribution \(\Rightarrow\) reduced \(K\)).

LF-\(\mu\)SR relaxation functions \(\overline{G}(t)\) at low temperatures in NFL materials (DEM *et al.* 03).
Correlation of normalized Λ and K with residual resistivity: with increasing $\rho(0)$
Correlation of normalized Λ and K with residual resistivity: with increasing $\rho(0)$

- Λ increases \Rightarrow disorder shifts fluctuation power spectrum to low frequencies;
Correlation of normalized Λ and K with residual resistivity: with increasing $\rho(0)$

- Λ increases \Rightarrow disorder shifts fluctuation power spectrum to low frequencies;
- K decreases from 1 (exponential) \Rightarrow disorder increases spread in rates.
Correlation of normalized Λ and K with residual resistivity: with increasing $\rho(0)$

- Λ increases \Rightarrow disorder shifts fluctuation power spectrum to low frequencies;
- K decreases from 1 (exponential) \Rightarrow disorder increases spread in rates.

Correlation is good (smooth).
Correlation of normalized Λ and K with residual resistivity: with increasing $\rho(0)$

- Λ increases \Rightarrow disorder shifts fluctuation power spectrum to low frequencies;
- K decreases from 1 (exponential) \Rightarrow disorder increases spread in rates.

Correlation is good (smooth). Correlation with $\gamma(1\, \text{K})$ is poor.
Correlation of normalized Λ and K with residual resistivity: with increasing $\rho(0)$

- Λ increases \Rightarrow disorder shifts fluctuation power spectrum to low frequencies;
- K decreases from 1 (exponential) \Rightarrow disorder increases spread in rates.

Correlation is good (smooth). Correlation with $\gamma(1\,\text{K})$ is poor.
\Rightarrow differences in relaxation rates not due to material-dependent energy scales.
Local or cooperative dynamics?

Distributed low-temperature rate, but unique value of time-field scaling exponent for all spins.

Form of spin correlation function $S(r; t)$ is the same for all spins. Strongly suggests homogeneous dynamics (but inhomogeneous fluctuation amplitudes and hyperfine couplings), cooperative rather than single-ion or independent-cluster behavior. Evidence against inhomogeneous local single-ion or cluster dynamics (distributed fluctuation rates) of Kondo disorder/Grifths-phase pictures.
Local or cooperative dynamics?

Distributed low-temperature rate, but
Local or cooperative dynamics?

Distributed low-temperature rate, but

- Unique value of time-field scaling exponent α for all f spins.

Strongly suggests homogeneous dynamics (but inhomogeneous fluctuation amplitudes and hyperfine couplings), cooperative rather than single-ion or independent-cluster behavior. Evidence against inhomogeneous local single-ion or cluster dynamics (distributed fluctuation rates) of Kondo disorder/Griffiths-phase pictures.
Local or cooperative dynamics?

Distributed low-temperature rate, but

- Unique value of time-field scaling exponent \(\alpha \) for all \(f \) spins.

\[\Rightarrow \text{Form of spin correlation function } \langle S(r, t) \cdot S(r, 0) \rangle \text{ the same for all spins.} \]
Local or cooperative dynamics?

Distributed low-temperature rate, but

- Unique value of time-field scaling exponent \(\alpha \) for all \(f \) spins.

\[\Rightarrow \text{Form of spin correlation function } \langle S(r, t) \cdot S(r, 0) \rangle \text{ the same for all spins.} \]

Strongly suggests
Local or cooperative dynamics?

Distributed low-temperature rate, but

- Unique value of time-field scaling exponent α for all f spins.

\Rightarrow Form of spin correlation function $\langle S(r, t) \cdot S(r, 0) \rangle$ the same for all spins.

Strongly suggests

- *homogeneous dynamics* (but inhomogeneous fluctuation amplitudes and hyperfine couplings),
Local or cooperative dynamics?

Distributed low-temperature rate, but

- Unique value of time-field scaling exponent α for all f spins.

\Rightarrow Form of spin correlation function $\langle S(r, t) \cdot S(r, 0) \rangle$ the same for all spins.

Strongly suggests

- homogeneous dynamics (but inhomogeneous fluctuation amplitudes and hyperfine couplings),

\Rightarrow cooperative rather than single-ion or independent-cluster behavior.
Local or cooperative dynamics?

Distributed low-temperature rate, but

- Unique value of time-field scaling exponent α for all f spins.

\Rightarrow Form of spin correlation function $\langle S(r, t) \cdot S(r, 0) \rangle$ the same for all spins.

Strongly suggests

- homogeneous dynamics (but inhomogeneous fluctuation amplitudes and hyperfine couplings),

\Rightarrow cooperative rather than single-ion or independent-cluster behavior.

Evidence against inhomogeneous local single-ion or cluster dynamics (distributed fluctuation rates) of Kondo disorder/Griffiths-phase pictures.
Conclusions

LF-SR relaxation in ordered and disordered f-electron NFL materials: Field dependence of relaxation rate gives $\gamma(H)$; divergence of $\gamma(H)$ down to very low (but not zero) frequencies for both ordered and disordered systems. Disorder gives rise to much stronger low-frequency fluctuations than homogeneous quantum criticality. Correlation function same form for all spins (cooperative rather than local (single-ion or cluster) dynamics).

Glassy behavior in disordered systems?
Conclusions

LF-μSR relaxation in ordered and disordered f-electron NFL materials:

Disorder gives rise to much stronger low-frequency fluctuations than homogeneous quantum criticality.

Correlation function same form for all spins cooperative rather than local (single-ion or cluster) dynamics.

Glassy behavior in disordered systems?
Conclusions

LF-\(\mu\)SR relaxation in ordered and disordered \(f\)-electron NFL materials:

- Field dependence of relaxation rate
Conclusions

LF-μSR relaxation in ordered and disordered f-electron NFL materials:

- Field dependence of relaxation rate
 - gives $\chi''(\omega_\mu)$, $\omega_\mu = \gamma_\mu H$;
Conclusions

LF-μSR relaxation in ordered and disordered f-electron NFL materials:

- Field dependence of relaxation rate
 - gives $\chi''(\omega_\mu)$, $\omega_\mu = \gamma_\mu H$;
 - divergence of $\chi''(\omega)/\omega$ down to very low (but not zero) frequencies for both ordered and disordered systems.
Conclusions

LF-\(\mu\)SR relaxation in ordered and disordered \(f\)-electron NFL materials:

- Field dependence of relaxation rate
 - gives \(\chi''(\omega)\), \(\omega = \gamma H\);
 - divergence of \(\chi''(\omega)/\omega\) down to very low (but not zero) frequencies for both ordered and disordered systems.
- Disorder gives rise to \textit{much stronger} low-frequency fluctuations than homogeneous quantum criticality.
Conclusions

LF-μSR relaxation in ordered and disordered f-electron NFL materials:

- Field dependence of relaxation rate
 - gives $\chi''(\omega_\mu)$, $\omega_\mu = \gamma_\mu H$;
 - divergence of $\chi''(\omega)/\omega$ down to very low (but not zero) frequencies for both ordered and disordered systems.
- Disorder gives rise to much stronger low-frequency fluctuations than homogeneous quantum criticality.
- correlation function same form for all spins ⇒ cooperative rather than local (single-ion or cluster) dynamics.
Conclusions

LF-μSR relaxation in ordered and disordered f-electron NFL materials:

- Field dependence of relaxation rate
 - gives $\chi''(\omega_\mu)$, $\omega_\mu = \gamma_\mu H$;
 - divergence of $\chi''(\omega)/\omega$ down to very low (but not zero) frequencies for both ordered and disordered systems.

- Disorder gives rise to much stronger low-frequency fluctuations than homogeneous quantum criticality.

- correlation function same form for all spins \Rightarrow cooperative rather than local (single-ion or cluster) dynamics.

\Rightarrow Glassy behavior in disordered systems?
Questions

Are these slow "glassy" spin fluctuations ordered-system quantum fluctuations strongly modified by disorder, or new "quantum spin glass" excitations created by disorder?

Do "glassy" NFL spin dynamics depend universally on residual resistivity? What does this mean?

How are fluctuations slowed down? Is frustration involved?
Questions

Are these slow “glassy” spin fluctuations ordered-system quantum critical fluctuations strongly modified by disorder, or new “quantum spin glass” excitations created by disorder? Do “glassy” NFL spin dynamics depend universally on residual resistivity? What does this mean? How are fluctuations slowed down? Is frustration involved?
Questions

Are these slow “glassy” spin fluctuations

• ordered-system quantum critical fluctuations *strongly modified* by disorder, or
Questions

Are these slow “glassy” spin fluctuations

- ordered-system quantum critical fluctuations strongly modified by disorder, or
- new “quantum spin glass” excitations created by disorder?
Questions

Are these slow “glassy” spin fluctuations

- ordered-system quantum critical fluctuations *strongly modified* by disorder, or
- new “quantum spin glass” excitations *created* by disorder?

Do “glassy” NFL spin dynamics depend universally on residual resistivity? What does this mean?
Questions

Are these slow “glassy” spin fluctuations

- ordered-system quantum critical fluctuations strongly modified by disorder, or
- new “quantum spin glass” excitations created by disorder?

Do “glassy” NFL spin dynamics depend universally on residual resistivity? What does this mean?

How are fluctuations slowed down? Is frustration involved?
Questions (continued)
Questions (continued)

What is significance of observation $\chi''(\omega) \propto \omega^{1-\alpha}$ ($\alpha > 0$) down to MHz frequencies?
Questions (continued)

What is significance of observation $\chi''(\omega) \propto \omega^{1-\alpha}$ ($\alpha > 0$) down to MHz frequencies?

- Ordinarily $\chi''(\omega) \propto \omega$. When can this break down?
Questions (continued)

What is significance of observation $\chi''(\omega) \propto \omega^{1-\alpha}$ ($\alpha > 0$) down to MHz frequencies?

- ordinarily $\chi''(\omega) \propto \omega$. When can this break down?
- Can we understand low-frequency cutoff frequencies $\lesssim 100$ kHz?
Questions (continued)

What is significance of observation $\chi''(\omega) \propto \omega^{1-\alpha}$ ($\alpha > 0$) down to MHz frequencies?

- Ordinarily $\chi''(\omega) \propto \omega$. When can this break down?
- Can we understand low-frequency cutoff frequencies $\lesssim 100$ kHz?

Relation between scaling exponent in ordered (YbRh_2Si_2, $\alpha \approx 1$; $\text{CeCu}_{5.9}\text{Au}_{0.1}$, $\alpha \approx 0.75$ [from neutron scattering and NMR]) and disordered (UCu_4Pd, $\alpha \approx 0.3$) NFL systems?
Questions (continued)

What is significance of observation $\chi''(\omega) \propto \omega^{1-\alpha} (\alpha > 0)$ down to MHz frequencies?

- Ordinarily $\chi''(\omega) \propto \omega$. When can this break down?
- Can we understand low-frequency cutoff frequencies $\lesssim 100$ kHz?

Relation between scaling exponent in ordered ($\text{YbRh}_2\text{Si}_2, \alpha \approx 1$; $\text{CeCu}_{5.9}\text{Au}_{0.1}, \alpha \approx 0.75$ [from neutron scattering and NMR]) and disordered ($\text{UCu}_4\text{Pd, } \alpha \approx 0.3$) NFL systems?

...
Collaborators:

M. S. Rose
B.-L. Young
O. O. Bernal
R. H. Heffner
G. D. Morris
K. Ishida
G. J. Nieuwenhuys
J. E. Sonier
M. B. Maple
G. R. Stewart
B. Andraka
K. Heuser
O. Trovarelli
C. Geibel
F. Steglich

Univ. of California, Riverside
Cal. State Univ., Los Angeles
LANL, JAERI Tokai
LANL, TRIUMF
Osaka Univ., U.C. Riverside, Kyoto Univ.
Kamerlingh Onnes Lab., Leiden Univ.
Simon Fraser Univ., TRIUMF
Univ. of California, San Diego
Univ. of Florida
Uni. Augsburg
MPI-CPS, Dresden

Special thanks: μSR user support groups at the Paul Scherrer Institute (D. Herlach, C. Baines, A. Amato) and TRIUMF (S. Kreitzman, B. Hitti, D. Arseneau); M. Aronson, A. Castro Neto, P. Coleman, V. Dobrosavljević, G. Kotliar, A. Millis, E. Miranda, R. Osborn, Q. Si, C. Varma, R. Walstedt.

Supported in part by U.S. NSF (UCR, CSULA, UCSD), Ministry of Education, Sport, Science, and Technology of Japan (Osaka), Netherlands NWO and FOM (Leiden), Canadian NSERC (Simon Fraser), and U.S. DOE (Los Alamos, U. Florida).