Formation of heavy fermion state in geometrically frustrated LiV$_2$O$_4$

Hide TAKAGI (U-TOKYO & RIKEN)

Collaborators

Seiji Niitaka (RIKEN)
Chiharu Urano (U-Tokyo → AIST)
Shin Kondo (U-Tokyo → SONY)

Leiden August 1st 2005
Outline

Introduction:
- Geometrical Frustration in Spinel Oxides

Heavy Fermion Oxide LiV$_2$O$_4$:
- heavy fermion formation: experimental evidences
- origin of heavy quasi particle mass
 close proximity to charge ordered state
 low-E quasi-particle DOS singularity (meta-magnetism)

Summary & Conclusion
Spinel Structure: AB_2O_4

(cubic: Fd3m)

LiV$_2$O$_4$ crystallizes in cubic spinel structure
What do we expect for spinel oxides?

- Spin Frustration (when AF)

 Strong degeneracy 3D spin liquid?

- Charge Frustration (when mixed valent)

 Verway problem
 Magnetite Fe_3O_4 1:1 Fe$^{2+}$ & Fe$^{3+}$

- Orbital Frustration?

- Exotic Phase (transition) ?

 Nature always tries to suppress the degeneracy
 couple with lattice, orbital, itinerant carriers
Spin Ordering in geometrically frustrated spinel oxides ZnV$_2$O$_4$ (V^{3+}) – coupling with orbital & lattice

ZnV$_2$O$_4$: t_{2g}^2, $S=1$ Mott Ins.

AF triggered by Cubic to Tetragonal transition at $T_S=50$ K

Orbital ordering of yz & zx orbitals \(\Rightarrow \) suppress frustration

$T_N = 40K$

$\langle \theta_{CW} \rangle = -420K$

$T_N / |\theta_{CW}| = 0.095$

Motome & Tsunetsugu (04)
Charge ordering in geometrically frustrated AlV_2O_4 ($V^{2.5+}$) – valence skipping state

3:1 V^{2+} and V^{4+} (valence skipping)

instead of 1:1 V^{2+} and V^{3+} (frustrated)

Matsuno, H.T et al. JPSJ (01), PRL (03)

3-1 Charge Ordering coupled with Rhombohedral Distortion below 700 K
LiV$_2$O$_4$ spinel: Verway system without charge ordering

$V^{3.5+}$, mixed valent oxide with 1:1 V^{3+} & V^{4+}
(3d$^{1.5}$ 1.5 electron /V t_{2g} $V^{3.5+}$)

Analogous to AlV$_2$O$_4$, & ZnV$_2$O$_4$:
strong charge & spin frustration anticipated

(System does not do anything to suppress frustration)
No charge & spin ordering observed down to the lowest T measured

The first heavy fermion oxides: S.Kondo et al. PRL (97)
Heavy Fermion oxide LiV$_2$O$_4$

\[\gamma = 380 \text{ mJ/molK}^2 \]

\[m^* = 150m_0 \]

\[RW = 1.7 \]

\[T^* = 20-30 \text{ K} \]

C. Urano, H.T et al PRL 85, 1052 (00)
Origin of the heavy quasiparticle mass?

Only t_{2g} electrons involved

- **Kondo Scenario?**
 - 1.5 d-electron
 - LDA+U (Anisimov et al.)
 - $0.5 \, e_g$ (itinerant) + $1 \, a_{1g}$ (localized)
 - trigonal field splitting

- **Geometrical frustration?**
 - A. George
 - P. Coleman
 - P. Fulde
 - a new route to HF

Experimentally:

- critically close to charge ordered insulator (charge frustration)
- no magnetic ordering (spin frustration)
“Bad metal” behavior in LiV$_2$O$_4$

analogous to TMOs near Mott(CO) transition, indicative of close proximity to CO

Distinct from conventional HFs

absence of resistivity saturation

Metallic behavior above IR limit

C.Urano, H.T et al PRL 85, 1052 (00)
Switching from HF metal to Charge Ordered Insulator - HF is a “melted” COI

Pressure induced metal-insulator transition

Very likely CO transition because of the mixed valent nature (formally 1:1 V$^{3+}$, V$^{4+}$)

Geometrical frustration

HF is “Melted” COI
Evolution of C(T) from frustrated magnet to HF

ZnV$_2$O$_4$:
strongly frustrated AF
Strong spin degeneracy suppressed by coupling with lattice & orbital

Hole Doping
ZnV$_2$O$_4$ + 1/2 hole/V = LiV$_2$O$_4$

x-independent large entropy $S(50K) \sim 50\% R \ln 3 / V$
A naive & speculative picture

- Fermi liquid critically close to COI (charge frustration)
 - close proximity to COI leads to quasi-particle DOS (mass) enhancement?

- no magnetic ordering due to spin frustration
 - quasi-particle DOS (mass) not suppressed unlike other SCES without strong frustration
Single crystals of LiV$_2$O$_4$ grown by flux technique

Better understanding of low E quasi-particle electronic states

Matsushita (ISSP)
Meta-magnetic transition at ~40T in LiV$_2$O$_4$ at low T

$M = 1.2 \ \mu_B$

$\Delta M \sim 0.4 \ \mu_B$

- 3 μ_B for all t_{2g} spins
- 2 μ_B for a_{1g} spin
- Continue to increase above Hc (no plateau)

Typical of itinerant metamagnetism
Metamagnetic transition linked with heavy QP formation

“Metamagnetism” observed only $T \ll 20\, \text{K} = T^*$

MR peak at metamagnetic transition

Critical scattering
Metamagnetic transition in CeRu$_2$Si$_2$

\[\chi \text{ Susceptibility peak} \]

\[\Delta \rho/\rho \text{ MR peak at metamagnetic transition} \]

M Metamagnetism only in coherent regime

Stoner Free Energy (GL) +Zeeman shift for itinerant meta-magnet
Itinerant meta-magnetism

Stoner Free Energy (GL)
\[F(M) = AM^2 + BM^4 + CM^6 + \ldots - \mu_B HM \]
\[A = 1 - \alpha < 0 : \]
Stoner condition for FM
A > 0, B < 0, C > 0:
meta-magnetism

\[B \not\in (D'/D)^2 - D''/3D < 0 \]
\[D' = dD/dE|_{E_F} \quad D'' = d^2D/dE^2|_{E_F} \]

DOS singularity near \(E_F \)

“Kondo” peak
Right above \(E_F \)
DOS singularity
LiV$_2$O$_4$ as an itinerant meta-magnet

$\chi(T)$ peak temperature T_{max} and B_c for metamagnetism

Sakakibara (ISSP)

LiV$_2$O$_4$: T_{max} at 25 K & B_c at 40T

DOS singularity like Kondo peak at a few meV scale!!
PES data from Shin group
- indication of sharp DOS peak above E_F

Metamagnetic transition at 40T

$\chi(T)$ peak at 25 K

~ 4 meV
Sharp qp DOS peak ~4 meV above E_F rapidly evolves at low T

reminiscent of Kondo resonance peak in Ce compound

Ce compound: peak slightly above E_F because of degeneracy of f-orbitals

LiV$_2$O$_4$: t_{2g} ?? No reason peak should be slightly above E_F even if kondo

QP DOS enhancement due to close proximity to COI + "XX (additional ingredient)" ??

Which scenario can explain the DOS peak reasonably?
Summary & Conclusion

- Heavy fermion ground state in geometrically frustrated LiV$_2$O$_4$

- Close Proximity to Charge Ordered State

- Sharp Dos peak a few to several meV above the Fermi level

- Needs theoretical input