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Example

Continuous time Markov chain in

A=1{0,1,2}

with transition rates

q(1,0) = ¢q(1,2) = ¢q(2,1) = 1. ¢(0,1) = ¢(0,2) =0

(0 is absorbing state).

If one starts with 10.000 (say) chains in state 1, which proportion

of the survival chains will be in state 1 by time 17

And by time oo?
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and

(golden number)

o

Example 2.1 of Burdzy, Holyst and March
A =1{0,1,2} and ¢(1,0) = ¢(1,2) = q(2,1) = 1.

V(1) = 3_2¢5 —1+¢
v =1
b = L= V5 —0.618033989
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Quasi stationary distributions (QSD)

Irreducible jump Markov process with rates QQ = (q(x,y)) on
AU{0}. P,(x,y) transition matrix.

A countable and 0 absorbing state.

Z; is ergodic with a unique invariant measure dg

Law starting with p conditioned to non absorption until time ¢:

> yer MYy) Py, )

— , &L -~ A
1 — Zye/\ :u(y>Pt(ya O)

A quasi stationary distribution (QSD) is a probability measure v on
A satisfying
Pt =V

o
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v is a left eigenvector for the restriction of the matrix ) to A with

eigenvalue A\, = — > 1 (y)q(y,0): v must satisfy the system

> vy)aly,x) = (— > v(y)aly, 0))V(ﬂf), Vo € A.

yeA yeN

vQ = A\ v

> vy laly, =) + q(y, 0)v(x)] =0, Vo€ A

yeA

recall q(x,r) = — Z q(z,y)

yeAU{0}\{z}

> v laly,x) +q(y, 0v(@)] = v(z) > (q(z,y) + q(z,0)v(y))

yeA\{z} yeA\{z}

(balance equations)

o /




Yaglom limit for u:
lim @i (y), yeA
t— 00

if it exists and it is a probability on A.

A finite, Darroch and Seneta (1967): there exists a unique QSD v
for () and that the Yaglom limit converges to v independently of
the initial distribution.

A infinite: neither existence nor uniqueness of QSD are guaranteed.

Example: asymmetric random walk Seneta:
p=q(i,i+1)=1—¢q(i,i — 1), for ¢ > 0. In this case there are
infinitely many QSD when p < 1/2 and none when p > 1/2.

Minimal @SD (for p < 1/2):

v(x) ~ x( b )x/2

o
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Existence

For A = N under the condition

lim P(R>t|Zy=2)=1 for each ¢ > 0

r— 00

where R absorption time,
existence of QsD <= Ee? <

for some 6 > 0.

(Ferrari, Kesten, Martinez and Picco [6])

o
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Existence

Ergodicity coefficient of Q):

a=a(Q) =) Jnfa(,2)

z€A

Mazximal absorbing rate of Q:

C = C(Q) = supq(z,0)

e

Theorem 1. If a > C then there exists a unique QSD v for () and

the Yaglom limit converges to v for any initial measure L.

Jacka and Roberts [10]: under o > C' uniqueness and Yaglom limit.

o
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The Fleming-Viot process (FV)
e System of N > 0 particles evolving on A.
e Particles move independently with rates () between absorptions.

e When a particle is absorbed, it chooses one of the other particles

uniformly and jumps instantaneously to its position.

Generator (Master equation):

L= 3 [aet).y) + a(e).0) Y

=1 yeA\{£(0)}

[(re) - 1)

where £9Y(j) = y for j = i and £“Y(j) = £(j) otherwise and

N

n(&y) =) 1{E0) =y}

1=1
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Empirical profile and conditioned process

&; process in A(l,---,N);

n € {n € N* : 3" n(x) = N} unlabeled process,

n:(x) = number of £ particles in state x at time ¢.

Theorem 2. Let pu probability on A. Assume
(ﬁév’“(i), i=1,...,N) iid with law . Then, fort >0 and x € A,

E Na/”“
T 2
N,
. T]t (:U) o 7 . .7
A}l_rgo N = ¢y (7), in Probability

Fleming and Viot [8], Burdzy, Holyst and March [1], Grigorescu

and Kang [9] and Lébus [12] in a Brownian motion setting.

o
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Ergodicity of rv
A finite, Fv Markov in finite state space

Hence ergodic (there exists unique stationary measure and the

process converges to the stationary measure).

For A infinite:
Theorem 3. If o > 0, then for each N the ¥V process with N

particles is ergodic.

o
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Stationary empirical profile and QSD
Assume ergodicity.

Let ¥ be distributed with the unique invariant measure.

Theorem 4. o > C. For each x € A, the following limits exist

N
ot () . »
A}l_rgo N = v(x), in Probability

and v 1§ the unique QSD for ().

o
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Sketch of proofs

Existence part of Theorem 1 is a corollary of Theorem 4.

Uniqueness: Jacka and Robert.

Theorem 3: stationary version of the process “from the past” as in

perfect simulation.
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Theorems 2 and 4 based on asymptotic independence.
e (o, unique solution of
d
et (@) =) el Wy o) +aly. 0l (@),  w €A
yeAN

e 7); satisfies

%E(niv’]’“\;(w)> _ ZE(niV’;(y) (o, +q(y70)77§’“_(3i)>)

e We prove:

E[n, " (y)n, " (z)] — En, " (y) En, " (z) = O(N)

14
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e (QSD satisfies

Zu z)+q(y,0)v(z)] =0, z€A.

yeN

e 7V invariant for FV satisfies:

e Under a > (-

Eln™ (y)n™ (z)] — En™ (y) En™ (z) = O(N)

e Variance order 1/N, setting x = v.
e Finally we show (¢, ", N € N) and (o, N € N) are tight.

o
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Comments

e Fleming-Viot permits to show existence of a QSD in the a > C

case (new).

e Compared with Brownian motion in a bounded region with
absorbing boundary (Burdzy, Holyst and March [1], Grigorescu and
Kang [9] and Lobus [12] and other related works):

e Existence of the FV process immediate here.
e they prove the convergence without factorization.

e We prove: vanishing correlations sufficient for convergence of

expectations and in probability.
e To prove tightness classify & particles in types.
e Tightness proof needs a > C as the vanishing correlations proof.

o /
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Graphical construction of FvV process

17
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Graphical construction of FvV process

To each particle 2 = 1,..., N, associate 3 marked Poisson processes:
e Regeneration times. PP (a): (a’),ez, marks (A%),cz

e Internal times. PP (g — «): (b%)nez,
marks ((B!(z), x € A), n € Z)

e Voter times. PP (C): (¢ )nez,
marks ((C%, (Fi(x), z € A)), n € Z)

18
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Law of marks:

o P(A;, =y) =ay)/a, y € A;

S A o) ey e an fu

¢ P(BY(x) = y) = TR
P(B,(z) =x) =13 0y P(BL(2) = y).
o P(Fi(z) 1y:%gm:1—Pwm@:o%xeA
1
o P(C,=))= g7 771

Call w a realization of the marked PP.

o
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Construction of g[ZZf] — g[];ff] y

e Order Poisson times.
e Initial configuration & at time s .

e Configuration does not change between Poisson events.

e At each regeneration time a! particle ¢ adopts state A?

regardless the current configuration.

e If at the internal time b! — the state of particle i is x, then at
time b’ particle i adopts state B’ (x) regardless the state of the

other particles.

e If at the voter time ¢! — the state of particle ¢ is x and F'(x) = 1,
then at time ¢! particle ¢ adopts the state of particle C?; if
F'(x) =0, then particle 7 does not change state.

e The final configuration is f[];ff]

o /
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Lemma 1. The process (f[s gt = s) is ¥V with initial condition

o = ¢

21
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Generalized duality Define
w'[s,t] = {m € w : m involved in the definition of f[];ff]w(z)},
Generalized duality equation:
eNE () = H(w[s, 1), 9) (1)

e No explicit formula for H.

e For any time s, §[JZ f} (1) depends only on the finite number of

Poisson events contained in w’[s, t].

o /
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Theorem 3. If a > 0 the FV process is ergodic.

Proof If number of marks in w'[—oo0,t] is finite, then

&,(0) = lim H(w'[s,t],£), i€{l,....,N}, teR

S——0O
is well defined and does not depend on &.
e By construction (£, t € R) is a stationary FV process.
e The law of £ is unique invariant measure.

e Number of points in w'[—oo0, t] is finite if there is [s(w), s(w) + 1]
in the past of £ with one regeneration mark for each k£ and no voter
marks. []

o /
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Particle correlations in the FVv process

Proposition 1. Let x,y € A. For allt >0

’E(niv(w)niv(y))_E(niv(w)>E(n£V(y))‘ per 2)

NE N N ) SN

Assume o > C. Let ™ be distributed according to the unique

invariant measure for the ¥V process with N particles. Then

D) ()] < yate @

™ M

(2

24



Coupling

e 4-fold coupling (w[s, t],w’[s, t], &'[s, t], &’ [s, t])
o Ws, t] = &s, t]

e s, t] Nw'[s,t] = O implies w[s,t] = &7 [s, ]

e marginal process (W'[s, t], &’ [s, t]) have the same law as two

independent processes with the same marginals as (w'[s, t],w’|[s, t]).

25



-

P(&(j) = 2,80 () = y) — P& (5) = 2)P(&*(5) = y)

_ E(1{H(wﬂ‘,5) =z, HW', &) = )} —1{H (&7, &) = z), H(&, €)

o If
w'Nw =1
then
w! (s,t) = &7 (s,t) and w'(s,t) = (s, )
Hence,

P& (G) = 2,65 (0) = y) — P(& 5 (5) = 2)P(& (i) = v)]

< P(w' Nw? #0).

y)J
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Lemma 2. (s=0)

| | 1 C
( J _ 2(C—a)t
P(w' Nw? # 0) N—la—C(l e ) (4)
Proof:
. . 20 N .
Plw'Nw! #0) < —/ EW’[s, t| EW/ s, t|ds
N—-1J

U'[s, t] Random walk that grows with rate Cz and decreases with

rate ax. Expectation is bounded by e(t=5)(C—a),

P(w' Nw! # () < 20 /t e2(C=)s s
SN-1J,

which gives the result. []

o /
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Proof of Proposition 1 Take n and £ such that
n(z) = ¥, 1{€(j) = =}. Then

E(m ’"(iv)m n(y)) _ 1 ZZP( i\’f(w _ x,gi\’ﬁ(]) — y)

N2 ﬁz‘:l j=1
R = (L LR 0 - R0 <)

Using this, and (4) with a = 0 we get (2).
Assume o > C. Taking t = oo in (4) we get (3). [

o /
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Tightness

Proposition 2. Forallt >0,z € A,i=1,...,N and pu,

]Em]’v(ﬂf) < eCtZu(Z)Pt(Z>37>'

z€A

As a consequence (]Eniv’“/N, N € N) is tight.
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Assume « > 0 and define p, on A by
Oy

o — T A7
o () o TE

where a, = inf, q(z,x). For z,x € A define
Ry(z,x) = / e MP(z, x)dt.
0

Proposition 3. Assume o > C and let n distributed with

invariant measure for ¥v. Then for x € A,

C
N
<
P (QZ) = &_CMQR(Q—C')<33>

As a consequence, the family of measures (n™ /N, N € N) is tight.

o

J
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Types
e Particle ¢ is type 0 at time t if it has not been absorbed in the

time interval [0, ¢].

e If at absorption time s particle ¢ jumps over particle 5 which has

type k, then at time s particle ¢ changes its type to k + 1.

P(&," " (i) = x, type(i, t) = 0) = Z,u VPi(z,x).
zeA

Ae(z, k) = P(& M (i) = z, type(i, t) = k)

31



Proof of Proposition 2 Recursive hypothesis:

k
S Pz, )

zeA

f%(x,k)f;

By (5) the statement is true for k£ = 0.
t
Ag(x, k+1) < / C Z As(y, k) Pi—s(y, x) ds.
0 yeN
Using recursive hypothesis,

B b/d(j ajs)k
= | n Z w(z) Z Ps(z,y)Pi_s(y, x)ds

zeA yeN

DINOLICR)
T zEA

(Ct>k+1
(k+1)

by Chapman-Kolmogorov. This proves (5). []

o
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Proof of Proposition 3 Under the hypothesis @ > C the process

(&Y (i), type(i,t)),i=1,...,N), t € R)

is Markovian constructed in a stationary way

Az, k) == P(& (i) = 2, type(i, ) = k)
does not depend on s.

Last regeneration mark of site ¢ before time s happened at time
s — T', where T is exponential of rate o. Then,

A(xz,0) = / ae O‘tz,ua VPi(z,x)dt = poRe(x).

z€A
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Similar reasoning implies

Az, k) < /OOO e~ *C Z Az, k — 1)P4(z, ) dt.

z€A

C ONE
— A1 Ra(w) < (a) 1o R¥L ()

R% (2, x) expectation of P, (z,x), 7, sum of k independent
exponential A. Multiplying and dividing by (a — C'),

P =) < T3 () (1 Dm0

Expectation of ,uaRf, K geometric with p =1 — (C/a).

C
oz—C'ua

P& (i) =) < Ro—c(x). O

o
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