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Universidade de São Paulo

http://www.ime.usp.br/~pablo

1



Example

Continuous time Markov chain in

Λ = {0, 1, 2}
with transition rates

q(1, 0) = q(1, 2) = q(2, 1) = 1. q(0, 1) = q(0, 2) = 0

(0 is absorbing state).

If one starts with 10.000 (say) chains in state 1, which proportion
of the survival chains will be in state 1 by time 1?

And by time ∞?
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Example 2.1 of Burdzy, Holyst and March

Λ = {0, 1, 2} and q(1, 0) = q(1, 2) = q(2, 1) = 1.

ν(1) =
3 −√

5
2

= 1 + φ

and

ν(2) = −1 −√
5

2
= −φ

φ =
1 −√

5
2

= −0.618033989

(golden number)
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Quasi stationary distributions (qsd)

Irreducible jump Markov process with rates Q = (q(x, y)) on

Λ ∪ {0}. Pt(x, y) transition matrix.

Λ countable and 0 absorbing state.

Zt is ergodic with a unique invariant measure δ0

Law starting with µ conditioned to non absorption until time t:

ϕµ
t (x) =

∑
y∈Λ µ(y)Pt(y, x)

1 − ∑
y∈Λ µ(y)Pt(y, 0)

, x ∈ Λ.

A quasi stationary distribution (qsd) is a probability measure ν on
Λ satisfying

ϕν
t = ν
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ν is a left eigenvector for the restriction of the matrix Q to Λ with
eigenvalue λν = −∑

y∈Λ ν(y)q(y, 0): ν must satisfy the system

∑
y∈Λ

ν(y) q(y, x) =
(
−

∑
y∈Λ

ν(y)q(y, 0)
)
ν(x), ∀x ∈ Λ.

νQ = λνν

∑
y∈Λ

ν(y) [q(y, x) + q(y, 0)ν(x)] = 0, ∀x ∈ Λ.

recall q(x, x) = −
∑

y∈Λ∪{0}\{x}
q(x, y)

∑
y∈Λ\{x}

ν(y) [q(y, x) + q(y, 0)ν(x)] = ν(x)
∑

y∈Λ\{x}

(
q(x, y) + q(x, 0)ν(y)

)

(balance equations)
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Yaglom limit for µ:
lim

t→∞ϕµ
t (y) , y ∈ Λ

if it exists and it is a probability on Λ.

Λ finite, Darroch and Seneta (1967): there exists a unique qsd ν

for Q and that the Yaglom limit converges to ν independently of
the initial distribution.

Λ infinite: neither existence nor uniqueness of qsd are guaranteed.

Example: asymmetric random walk Seneta:
p = q(i, i + 1) = 1 − q(i, i − 1), for i ≥ 0. In this case there are
infinitely many qsd when p < 1/2 and none when p ≥ 1/2.

Minimal qsd (for p < 1/2):

ν(x) ∼ x
( p

1 − p

)x/2
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Existence

For Λ = N under the condition

lim
x→∞ P(R > t|Z0 = x) = 1 for each t > 0

where R absorption time,

existence of qsd ⇐⇒ EeθR < ∞
for some θ > 0.

(Ferrari, Kesten, Mart́ınez and Picco [6])
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Existence

Ergodicity coefficient of Q:

α = α(Q) :=
∑
z∈Λ

inf
x∈Λ\{z}

q(x, z)

Maximal absorbing rate of Q:

C = C(Q) := sup
x∈Λ

q(x, 0)

Theorem 1. If α > C then there exists a unique qsd ν for Q and
the Yaglom limit converges to ν for any initial measure µ.

Jacka and Roberts [10]: under α > C uniqueness and Yaglom limit.
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The Fleming-Viot process (fv) .

• System of N > 0 particles evolving on Λ.

• Particles move independently with rates Q between absorptions.

• When a particle is absorbed, it chooses one of the other particles
uniformly and jumps instantaneously to its position.

Generator (Master equation):

Lf(ξ) =
N∑

i=1

∑
y∈Λ\{ξ(i)}

[
q(ξ(i), y) + q(ξ(i), 0)

η(ξ, y)
N − 1

]
(f(ξi,y) − f(ξ))

where ξi,y(j) = y for j = i and ξi,y(j) = ξ(j) otherwise and

η(ξ, y) :=
N∑

i=1

1{ξ(i) = y}.
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Empirical profile and conditioned process

ξt process in Λ(1,...,N);

ηt ∈ {η ∈ N
Λ :

∑
x η(x) = N} unlabeled process,

ηt(x) = number of ξ particles in state x at time t.

Theorem 2. Let µ probability on Λ. Assume
(ξN,µ

0 (i), i = 1, . . . , N) iid with law µ. Then, for t > 0 and x ∈ Λ,

lim
N→∞

EηN,µ
t (x)
N

= ϕµ
t (x)

lim
N→∞

ηN,µ
t (x)

N
= ϕµ

t (x), in Probability

Fleming and Viot [8], Burdzy, Holyst and March [1], Grigorescu
and Kang [9] and Löbus [12] in a Brownian motion setting.
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Ergodicity of fv

Λ finite, fv Markov in finite state space

Hence ergodic (there exists unique stationary measure and the
process converges to the stationary measure).

For Λ infinite:

Theorem 3. If α > 0, then for each N the fv process with N

particles is ergodic.
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Stationary empirical profile and qsd

Assume ergodicity.

Let ηN be distributed with the unique invariant measure.

Theorem 4. α > C. For each x ∈ Λ, the following limits exist

lim
N→∞

ηN (x)
N

= ν(x), in Probability

and ν is the unique qsd for Q.
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Sketch of proofs

Existence part of Theorem 1 is a corollary of Theorem 4.
Uniqueness: Jacka and Robert.

Theorem 3: stationary version of the process “from the past” as in
perfect simulation.
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Theorems 2 and 4 based on asymptotic independence.

• ϕt unique solution of

d

dt
ϕµ

t (x) =
∑
y∈Λ

ϕµ
t (y)[q(y, x) + q(y, 0)ϕµ

t (x)], x ∈ Λ

• ηt satisfies

d

dt
E

(ηN,µ
t (x)

N

)
=

∑
y∈Λ

E

(ηN,µ
t (y)

N

(
q(y, x) + q(y, 0)

ηN,µ
t (x)
N − 1

))

• We prove:

E[ηN,µ
t (y) ηN,µ

t (x)] − EηN,µ
t (y) EηN,µ

t (x) = O(N)
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• qsd satisfies
∑
y∈Λ

ν(y) [q(y, x) + q(y, 0)ν(x)] = 0, x ∈ Λ.

• ηN invariant for fv satisfies:

∑
y∈Λ

E

(ηN (y)
N

(
q(y, x) + q(y, 0)

ηN (x)
N − 1

))
= 0, x ∈ Λ.

• Under α > C:

E[ηN (y) ηN (x)] − EηN (y) EηN (x) = O(N)

• Variance order 1/N , setting x = y.

• Finally we show (ϕN,µ
t , N ∈ N) and (ρN , N ∈ N) are tight.
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Comments

• Fleming-Viot permits to show existence of a qsd in the α > C

case (new).

• Compared with Brownian motion in a bounded region with
absorbing boundary (Burdzy, Holyst and March [1], Grigorescu and
Kang [9] and Löbus [12] and other related works):

• Existence of the fv process immediate here.

• they prove the convergence without factorization.

• We prove: vanishing correlations sufficient for convergence of
expectations and in probability.

• To prove tightness classify ξ particles in types.

• Tightness proof needs α > C as the vanishing correlations proof.
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Graphical construction of fv process
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Graphical construction of fv process

To each particle i = 1, . . . , N , associate 3 marked Poisson processes:

• Regeneration times. PP (α): (ai
n)n∈Z, marks (Ai

n)n∈Z

• Internal times. PP (q̄ − α): (bi
n)n∈Z,

marks ((Bi
n(x), x ∈ Λ), n ∈ Z)

• Voter times. PP (C): (ci
n)n∈Z,

marks ((Ci
n, (F i

n(x), x ∈ Λ)), n ∈ Z)
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Law of marks:

• P(Ai
n = y) = α(y)/α, y ∈ Λ;

• P(Bi
n(x) = y) =

q(x, y) − α(y)
q̄ − α

, x ∈ Λ, y ∈ Λ \ {x};
P(Bi

n(x) = x) = 1 − ∑
y∈Λ\{x} P(Bi

n(x) = y).

• P (F i
n(x) = 1) =

q(x, 0)
C

= 1 − P (F i
n(x) = 0), x ∈ Λ.

• P (Ci
n = j) =

1
N − 1

, j 
= i.

Call ω a realization of the marked PP.
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Construction of ξN,ξ
[s,t] = ξN,ξ

[s,t],ω

• Order Poisson times.

• Initial configuration ξ at time s .

• Configuration does not change between Poisson events.

• At each regeneration time ai
n particle i adopts state Ai

n

regardless the current configuration.

• If at the internal time bi
n− the state of particle i is x, then at

time bi
n particle i adopts state Bi

n(x) regardless the state of the
other particles.

• If at the voter time ci
n− the state of particle i is x and F i

n(x) = 1,
then at time ci

n particle i adopts the state of particle Ci
n; if

F i
n(x) = 0, then particle i does not change state.

• The final configuration is ξN,ξ
[s,t].
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Lemma 1. The process (ξN,ξ
[s,t], t ≥ s) is fv with initial condition

ξN,ξ
[s,s] = ξ.
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Generalized duality Define

ωi[s, t] = {m ∈ ω : m involved in the definition of ξN,ξ
[s,t],ω(i)},

Generalized duality equation:

ξN,ξ
[s,t],ω(i) = H(ωi[s, t], ξ). (1)

• No explicit formula for H.

• For any time s, ξN,ξ
[s,t](i) depends only on the finite number of

Poisson events contained in ωi[s, t].
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Theorem 3. If α > 0 the fv process is ergodic.

Proof If number of marks in ωi[−∞, t] is finite, then

ξN
t,ω(i) =: lim

s→−∞H(ωi[s, t], ξ), i ∈ {1, . . . , N}, t ∈ R

is well defined and does not depend on ξ.

• By construction (ξN
t , t ∈ R) is a stationary fv process.

• The law of ξN
t is unique invariant measure.

• Number of points in ωi[−∞, t] is finite if there is [s(ω), s(ω) + 1]
in the past of t with one regeneration mark for each k and no voter
marks.
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Particle correlations in the fv process

Proposition 1. Let x, y ∈ Λ. For all t > 0
∣∣∣E

(ηN
t (x)ηN

t (y)
N2

)
− E

(ηN
t (x)
N

)
E

(ηN
t (y)
N

)∣∣∣ <
1
N

e2Ct (2)

Assume α > C. Let ηN be distributed according to the unique
invariant measure for the fv process with N particles. Then

∣∣∣E
(ηN (x)ηN (y)

N2

)
− E

(ηN (x)
N

)
E

(ηN (y)
N

)∣∣∣ <
1
N

α

α − C
(3)
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Coupling

• 4-fold coupling (ωi[s, t], ωj[s, t], ω̂i[s, t], ω̂j[s, t])

• ωi[s, t] = ω̂i[s, t]

• ω̂j [s, t] ∩ ωi[s, t] = ∅ implies ωj [s, t] = ω̂j [s, t]

• marginal process (ω̂i[s, t], ω̂j [s, t]) have the same law as two
independent processes with the same marginals as (ωi[s, t], ωj[s, t]).
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P(ξN,ξ
t (j) = x, ξN,ξ

t (i) = y) − P(ξN,ξ
t (j) = x)P(ξN,ξ

t (i) = y)

= E

(
1{H(ωj , ξ) = x, H(ωi, ξ) = y)}−1{H(ω̂j , ξ) = x), H(ω̂i, ξ) = y)}

)

• If
ωi ∩ ωj = ∅

then
ωj(s, t) = ω̂j(s, t) and ωi(s, t) = ω̂i(s, t)

Hence,

|P(ξN,ξ
t (j) = x, ξN,ξ

t (i) = y) − P(ξN,ξ
t (j) = x)P(ξN,ξ

t (i) = y)|

≤ P(ωi ∩ ωj 
= ∅).
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Lemma 2. (s = 0)

P(ωi ∩ ωj 
= ∅) ≤ 1
N − 1

C

α − C
(1 − e2(C−α)t) (4)

Proof:

P(ωi ∩ ωj 
= ∅) ≤ 2C

N − 1

∫ t

0

EΨ̂i[s, t] EΨ̂j[s, t]ds

Ψ̂i[s, t] Random walk that grows with rate Cx and decreases with
rate αx. Expectation is bounded by e(t−s)(C−α).

P(ωi ∩ ωj 
= ∅) ≤ 2C

N − 1

∫ t

0

e2(C−α)sds

which gives the result.
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Proof of Proposition 1 Take η and ξ such that
η(x) =

∑
j 1{ξ(j) = x}. Then

E

(ηN,η
t (x)ηN,η

t (y)
N2

)
=

1
N2

N∑
i=1

N∑
j=1

P(ξN,ξ
t (i) = x, ξN,ξ

t (j) = y)

EηN,η
t (x) EηN,η

t (y)
N2

=
1

N2

( N∑
i=1

N∑
j=1

P(ξN,ξ
t (i) = x)P(ξN,ξ

t (j) = y)
)

Using this, and (4) with α = 0 we get (2).

Assume α > C. Taking t = ∞ in (4) we get (3).
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Tightness

Proposition 2. For all t > 0, x ∈ Λ, i = 1, . . . , N and µ,

EηN,µ
t (x)
N

≤ eCt
∑
z∈Λ

µ(z)Pt(z, x).

As a consequence (EηN,µ
t /N, N ∈ N) is tight.
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Assume α > 0 and define µα on Λ by

µα(x) =
αx

α
, x ∈ Λ,

where αx = infz q(z, x). For z, x ∈ Λ define

Rλ(z, x) =
∫ ∞

0

λe−λtPt(z, x)dt.

Proposition 3. Assume α > C and let ηN distributed with
invariant measure for fv. Then for x ∈ Λ,

ρN (x) ≤ C

α − C
µαR(α−C)(x)

As a consequence, the family of measures (ηN/N, N ∈ N) is tight.
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Types

• Particle i is type 0 at time t if it has not been absorbed in the
time interval [0, t].

• If at absorption time s particle i jumps over particle j which has
type k, then at time s particle i changes its type to k + 1.

P(ξN,µ
t (i) = x, type(i, t) = 0) =

∑
z∈Λ

µ(z)Pt(z, x).

At(x, k) =: P(ξN,µ
t (i) = x, type(i, t) = k)
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Proof of Proposition 2 Recursive hypothesis:

At(x, k) ≤ (Ct)k

k!

∑
z∈Λ

µ(z)Pt(z, x) (5)

By (5) the statement is true for k = 0.

At(x, k + 1) ≤
∫ t

0

C
∑
y∈Λ

As(y, k) Pt−s(y, x) ds.

Using recursive hypothesis,

=
∫ t

0

C
(Cs)k

k!

∑
z∈Λ

µ(z)
∑
y∈Λ

Ps(z, y)Pt−s(y, x)ds

=
(Ct)k+1

(k + 1)!

∑
z∈Λ

µ(z)Pt(z, x).

by Chapman-Kolmogorov. This proves (5).
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Proof of Proposition 3 Under the hypothesis α > C the process

((ξN
t (i), type(i, t)), i = 1, . . . , N), t ∈ R)

is Markovian constructed in a stationary way

A(x, k) := P(ξN
s (i) = x, type(i, s) = k)

does not depend on s.

Last regeneration mark of site i before time s happened at time
s − T i

α, where T i
α is exponential of rate α. Then,

A(x, 0) =
∫ ∞

0

αe−αt
∑
z∈Λ

µα(z)Pt(z, x)dt = µαRα(x).
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Similar reasoning implies

A(x, k) ≤
∫ ∞

0

e−αtC
∑
z∈Λ

A(z, k − 1)Ps(z, x) dt.

=
C

α
Ak−1Rα(x) ≤

(C

α

)k

µαRk+1
α (x).

Rk
λ(z, x) expectation of Pτk

(z, x), τk sum of k independent
exponential λ. Multiplying and dividing by (α − C),

P(ξN
s (i) = x) ≤ C

α − C

∞∑
k=0

(C

α

)k(
1 − C

α

)
µαRk+1

α (x)

Expectation of µαRK
α , K geometric with p = 1 − (C/α).

P(ξN
s (i) = x) ≤ C

α − C
µαRα−C(x).
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