Lorentz Center - Statistical mechanics of static granular media from 6 Jul 2009 through 10 Jul 2009
  Current Workshop  |   Overview   Back  |   Home   |   Search   |     

    Statistical mechanics of static granular media
    from 6 Jul 2009 through 10 Jul 2009

 
Description and Aim
Description and Aim
 
 
Granular materials are collections of many particles interacting via pairwise forces, 
such as in liquids and gases. They occur in a number of industrial applications (food, 
pharmaceutical, construction) and in a number of geophysical phenomena (earthquakes, 
avalanches).
 
Despite their importance, at the present time there is no established theoretical framework 
from which to investigate their properties. Theories commonly used to investigate thermal 
systems fail in describing granular systems, because of the peculiarities of the interaction 
between granulates:
 
- Dissipation: energy is lost in the collision between grains. 
- Absence of Brownian motion: granulates are so large and massive that thermal motion 
  is negligible.
- Static friction: there are tangential (history dependent) forces.
 
Almost 20 years ago, S.F. Edwards expressed the fascinating perspective that granular 
systems at rest have a statistical mechanics of their own, different from that of Maxwell, 
Boltzmann, and Gibbs. This theory would allow one to describe static granular systems 
via a few thermodynamic parameters, as well as to study their properties by solving a 
granular partition function.
 
- Is this or a similar statistical mechanics approach really possible?  
- What are the corresponding equilibrium states?  
- What is the correct underlying equilibrium distribution?  
- How many thermodynamic parameters are needed?
 
The aim of this workshop is to explore these questions, establishing prospects and boundaries 
of a statistical mechanics approach to granular media.
 
 

 



   [Back]