Models of fractionation in disks

Karen Willacy
(Jet Propulsion Laboratory, California Institute of Technology)

(with Neal Turner (Jet Propulsion Laboratory, California Institute of Technology) and
Paul Woods (University College, London))
Outline

➤ Static disk models
 • What processes affect isotope ratios in disks and can they change the ratios inherited from the interstellar medium?
 • Deuterium

➤ Mixing models (vertical mixing at 5 AU – near Jupiter’s orbit)
 • What effect does vertical mixing have on
 (a) Distribution of molecules between gas and ice
 (b) Isotope ratios
 • Deuterium
 • Carbon and oxygen
Star formation

M. Hogerheijde (1998), Shu et al. (1987)
Disk models

- Hydrostatic models (d’Alessio et al.) provide $n(R,z), T_{\text{grain}}(R,z)$
- $T_{\text{gas}}(R,z)$ from balancing heating and cooling processes (Kamp & Dullemond 2004, Kamp & van Zadelhoff 2001)
- Initial chemical abundances from molecular cloud model
- Basic reaction network from the UMIST database (RATE06: Woodall et al. 2007)
 - Gas phase reactions
 - Irradiation by UV, cosmic rays, X-rays
 - Freezeout and desorption
 - Grain surface reactions

\[T_{\text{gas}} = T_{\text{grain}} \]

Photoelectric effect

\[T_{\text{gas}} \gg T_{\text{grain}} \]
Disk chemistry

Bergin et al. 2007
Deuterium fractionation in static disks
What causes fractionation?

- **Deuterium**
 - Gas phase
 \[
 \text{H}_3^+ + \text{HD} \Leftrightarrow \text{H}_2\text{D}^+ + \text{H}_2 + \Delta E = 220K
 \]
 \[
 \text{CH}_3^+ + \text{HD} \Leftrightarrow \text{CH}_2\text{D}^+ + \text{H}_2 + \Delta E = 370K
 \]
 \[
 \text{C}_2\text{H}_2^+ + \text{HD} \Leftrightarrow \text{C}_2\text{HD}^+ + \text{H}_2 + \Delta E = 550K
 \]
 - Grain chemistry
 - Enhanced D/H atomic ratios on grains leads to high D/H in molecules formed on grains e.g. formaldehyde, water and methanol

- **Primordial D/H ratio \(\approx 10^{-5} \)**
 - Cold regions molecular D/H ratios can be as high as 0.1
Gas phase ratios

Fractionation

\[\frac{\text{DCO}^+}{\text{HCO}^+} \]

\[\frac{\text{H}_2^+}{\text{H}_3^+} \]

\[\frac{\text{DCN}}{\text{HCN}} \]

\[\frac{\text{HDCO}}{\text{H}_2\text{CO}} \]

\[\frac{\text{HDO}}{\text{H}_2\text{O}} \]

Radius (AU)

Willacy (2007)
Deuterated ices

Model ratios:
DCN/HCN (ice) = 9.0 \times 10^{-3}
HDO/H_2O (ice) > 10^{-2}

Comet observations:
\frac{x(DCN)}{x(HCN)} = 2.3 \times 10^{-3}
\frac{x(HDO)}{x(H_2O)} = 5.0-6.6 \times 10^{-4} \text{ Oort cloud}
\frac{x(HDO)}{x(H_2O)} = 1.6 \times 10^{-4} \text{ Jupiter family}

Willacy & Woods (2009)

(Hartogh et al. 2011)
Mixing models
Mixing models

- Trace the vertical motion of a parcel of gas and dust in the disk at 5 AU using 3D MHD code.

- MHD shearing box calculation:
 - 600 particles
 - 300 orbits (Orbital period = 4×10^8 s)
 - take trajectories from 50 - 300 orbits
 - Concatenate trajectories together to make one path covering 1 Myrs

- MHD gives $n(t), T_{gr}(t)$

Inputs to chemical model
Selective photodissociation of CO

- Rates from Visser et al (2009)

![Graph showing interstellar photodissociation rates for different carbon isotopes.](image)
Photodissociation region
(hot gas)

$^{17}\text{O},^{18}\text{O},^{16}\text{O}$

Dissociation of $C^x\text{O}, \text{CO}_2$

CO, CO$_2$

Low $C^{16}\text{O}/C^x\text{O}$
Low $C^{16}\text{O}_2/C^x\text{O}_2$

Shielded region
(cooler gas)
Photodissociation region (hot gas)

17O, 18O, 16O

Dissociation of C^xO, CO₂

CO, CO₂

H₂O desorbed

High H₂¹⁶O/H₂^xO ice

Shielded region (cooler gas)

Low C¹⁶O/C^xO
Low C¹⁶O₂/C^xO₂
Photodissociation region (hot gas)

\[17\text{O}, 18\text{O}, 16\text{O} \]

Dissociation of \(C^{\text{xO}}, \text{CO}_2 \)

\[\text{CO, CO}_2 \]

High \(\text{H}_2^{16}\text{O}/\text{H}_2^{\text{xO}} \) ice

\[\text{H}_2\text{O desorbed} \]

Reform water and \(\text{O}_2 \)

\(\text{(OH} + \text{H} = \text{H}_2\text{O}) \)

\[\text{Low C}^{16}\text{O}/C^{\text{xO}} \]

\[\text{Low C}^{16}\text{O}_2/C^{\text{xO}_2} \]

Shielded region (cooler gas)
Photodissociation region (hot gas)

- Dissociation
- H_2O desorbed
- High $\text{H}_2^{16}\text{O}/\text{H}_2^{x}\text{O}$ ice

Reform water and O_2

- $17\text{O}, 18\text{O}, 16\text{O}$
- Dissociation of $\text{C}^{x}\text{O}, \text{CO}_2$
- CO reforms

Grain reactions form water

- Low $\text{H}_2^{16}\text{O}/\text{H}_2^{x}\text{O}$ ice
- Low $16\text{O}/16\text{O}^{x}\text{O}$

Shielded region (cooler gas)

- Low $\text{C}^{16}\text{O}/\text{C}^{x}\text{O}$
- High $\text{C}^{16}\text{O}/\text{C}^{x}\text{O}_2$

- High $\text{C}^{16}\text{O}/\text{C}^{x}\text{O}$
- Low $\text{C}^{16}\text{O}_2/\text{C}^{x}\text{O}_2$

- Low $16\text{O}/16\text{O}^{x}\text{O}$
Mixing effects on CO and water fractionation

- **Gas phase CO fractionation**
 - CO, C^{17}O, C^{18}O
 - Fractionation vs. time (yrs)

- **Water ice fractionation**
 - H_2O/H_2^{17}O ice, H_2O/H_2^{18}O ice
 - Fractionation vs. time (yrs)

- **Grain temperature**
 - R = 5 AU
 - Temperature vs. time (yrs)

- **CO at 5 AU**
 - C^{16}O, C^{17}O, C^{18}O
 - Fractionation abundance vs. time (yrs)
Can mixing lead to a reduction in ice abundances at 5AU?
Summary

- Gas phase deuteration altered by reactions in disk
- Differential photodissociation at surface + mixing important for C and O bearing molecules
 - Explanation for anomalous oxygen isotope ratios in meteorites?
- Vertical mixing (5 AU)
 - Reduces HDO/H₂O ratio in ice by factor of 100
 => better agreement with comet observations
 - Alters oxygen isotope ratios in CO, CO₂ and H₂O
 - May lead to the loss of water ice at 5 AU
 => reduction in mass available for Jupiter formation