Turbulent cavitation in a microchannel

D. Funfschilling1, G. Castanet2, N. Rimbert2

1 LRGP CNRS, Lorraine University, Nancy, France
2 LEMTA CNRS, Lorraine University, Nancy, France
Why cavitation in microchannel?

Cavitation may exist in injection nozzle, particularly for Direct Injection Engines where pressure of 1500 bars can be reached

Injection nozzles have diameter of a few hundreds of micrometer

Cavitation can have two negative effects - induced failure [1] – make the amount of fluid introduced incontrolable – and one positive effect: it can affect the atomization process [2], and improve mixing

Experiment done in decane

Modeling Engine Spray and Combustion Processes Gunnar Stiesch Springer

Channel in plexiglass done by micromachining 1mm deep

Square cross section 1 mm

Severe restriction

Fast expansion
Experimental set-up

double enveloppe tank

cavitation channel

high speed camera

controlling computer

gear pump

thermostated bath
Fluid used: 1 Methoxy HeptaFluoroPropane, commercial name NOVEC HFE 7000 from 3M

\[
\text{CH}_3\text{-O-O-CF}_2\text{-CF}_2\text{-CF}_3
\]

Molecular Weight: 200 g/mol
Liquid density: 1400 kg/m³
Viscosity at \(25°C\): \(0.32 \times 10^{-3}\) Pa.s
Surface tension: \(12.4 \times 10^{-3}\) N/m

Freezing point: \(-122°C\)
Boiling point at 1 atm: \(34°C\)
Critical density: \(553\) kg/m³
Critical pressure: \(28.4\) atm
Critical temperature: \(165°C\)

Specific heat: \(13.0\) kJ.kg\(^{-1}\)K\(^{-1}\)
Latent heat of vaporization: \(142\) kJ/kg
Thermal conductivity: \(0.075\) W.m\(^{-1}\)K\(^{-1}\)

Vapor pressure at \(25°C\): \(64.5\) kPa
Flow conditions in the restriction

<table>
<thead>
<tr>
<th>Flow rate [m³/s]</th>
<th>Pressure drop [Bar]</th>
<th>Velocity [m/s]</th>
<th>Reynolds</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.20E-06</td>
<td>0.26</td>
<td>3</td>
<td>13115</td>
</tr>
<tr>
<td>3.00E-06</td>
<td></td>
<td>4.09</td>
<td>17911</td>
</tr>
<tr>
<td>4.09E-06</td>
<td>0.67</td>
<td>5.87</td>
<td>25692</td>
</tr>
<tr>
<td>5.87E-06</td>
<td>0.85</td>
<td>6.84</td>
<td>29925</td>
</tr>
<tr>
<td>6.84E-06</td>
<td>1.31</td>
<td>9.08</td>
<td>39725</td>
</tr>
<tr>
<td>9.08E-06</td>
<td></td>
<td>9.85</td>
<td>43084</td>
</tr>
<tr>
<td>9.85E-06</td>
<td>1.62</td>
<td>11.10</td>
<td>48563</td>
</tr>
<tr>
<td>1.11E-05</td>
<td>1.98</td>
<td>12.90</td>
<td>56438</td>
</tr>
<tr>
<td>1.29E-05</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Onset of pocket cavitation in the divergence section

Onset of cavitation in the small channel
Pocket cavitation in the fast expansion divergence

Velocity in the small channel: 7 m/s, Reynolds 30 000
Flow field measurements by Particle Image Velocimetry (fluid: water, seedings particles 3.0 µm, volumetric flow rate 20 ml/min)
Images: 23000 fps (Phantom V710)

Film 1000x slower, T=20°C
Thermal effect of the cavitation?

\[\Delta T^* = \frac{\rho_V L_V}{\rho_L C_{P,L}} \]

\(\rho_V \) density of the gas
\(\rho_L \) density of the liquid
\(L_V \) latent heat
\(C_{P,L} \) heat capacity of the liquid

Stepanoff number

\[B = \frac{\Delta T}{\Delta T^*} = \frac{\alpha_V}{1 - \alpha_V} \approx 1 \]

\(\alpha_V \) vapor void fraction (volume fraction of vapour)

Mean thermal effect when \(\alpha_V = 0.5 \) (considering an infinite thermal diffusion) \(\Delta T = 0.5^\circ C \)
Experimental set-up for 2 colors flow induced fluorescence

Novec HFE 7000 + Pyrromethene 5x10^-5 mol/l
(2,6-di-tert-butyl-8-nonyl-1,3,5,7-tetramethylpyrromethene-BF$_2$ Complex)

532 nm filter
+ interference filter 615-625 nm

Photomultiplier 1

532 nm filter
+ interference filter 545-555 nm

Photomultiplier 2

Green continuous laser 532 nm

TWO COLOUR LIF: Fluorescence intensity in function of the wavelength

Fluorescence spectrum of Pyrromethene in Novec when excited by a 514.5 nm ion Argon laser. Two observed band: 545-555 nm and 615-625 nm
Temperature sensitivity coefficient : green dotted line, sensitivity different in both selected bands
Intensity of the light induced fluorescence

\[I_f (\lambda) = K_{opt} (\lambda) K_{spec} (\lambda) V_c I_0 C e^{\frac{\beta(\lambda)}{T}} \]

\(\lambda \): wavelength
\(K_{opt} \): optical constant
\(K_{spec} \): constant depending only on the spectroscopic properties of the tracer
\(V_c \): concentration of the tracer
\(I_0 \): laser excitation intensity
\(C \): concentration of the tracer
\(\beta \): temperature sensitivity parameter
\(T \): temperature in °K
Two color LIF

\[R_{12} = \frac{I_1}{I_2} = \frac{V_CI_0C \int_{545}^{555} K_{opt}(\lambda)K_{spec}(\lambda)e^{\frac{\beta(\lambda)}{T}} d\lambda}{V_CI_0C \int_{615}^{625} K_{opt}(\lambda)K_{spec}(\lambda)e^{\frac{\beta(\lambda)}{T}} d\lambda} \]

\[R_{12} \approx \frac{K_{opt}(\lambda)K_{spec}(\lambda)e^{\frac{\beta(\lambda)}{T}} \times \Delta\lambda|_{\lambda=550}^{\lambda=555}}{K_{opt}(\lambda)K_{spec}(\lambda)e^{\frac{\beta(\lambda)}{T}} \times \Delta\lambda|_{\lambda=620}^{\lambda=615}} \approx Ae^{\frac{B}{T}} \]

This results in \(A = 21.67 \) and \(B = -885.37 \) K\(^{-1}\)

Void fraction (first rough approximation)

\[\frac{I_1}{I_{1,\text{ref}}} \propto \alpha_L \propto (1 - \alpha_V) \quad \alpha_V \text{ vapor void fraction} \quad \alpha_L \text{ vapor void fraction} \]
Fluorescence calibration

\[y = -885.37x + 3.076 \]
Temperature effect along the vertical axis (Z)

Local void fraction

Local temperature effect
Temperature effect along a cross section

Local void fraction

Local temperature effect
Conclusion

• Cavitation experiments have been conducted in a microchannel, in conditions (relatively) close to direct injection nozzles

• The 2 colors LIF is able to measure at least at some points the temperature decrease induced by the cavitation

• Locally, a cooling effect of a few Celsius is observed

• In the mushy area, where interfaces are numerous, it seems not to be possible to measure both the temperature and the void fraction, probably because of light scattering
Perspective

• Simulate numerically the experiment to test different models of cavitation

• Establishing the phase diagramme of the cavitation in fonction of the temperature and liquid flow rate

• Analyse quantitatively the cavitation in doing statistics on the void fraction, on the size of the cavitation bubbles,

• Study the presence or not of hysteresis in this cavitation, and if it can be observed on the pressure drop through the channel restriction
Thanks to: Alexis Charolais, Aymeric Terret, Benoît Decroux, Vital Gratpain, undergraduate students from Ecole de Mines de Nancy who helped us with the experiments

Thanks to the University of Lorraine and Ecole des Mines de Nancy for their financial support
Thanks for your attention