Interpolation error in DNS simulations of turbulence: consequences for particle tracking

Michel van Hinsberg

Department of Physics, Eindhoven University of Technology,
PO Box 513, 5600MB Eindhoven, The Netherlands

J.H.M. ten Thije Boonkkamp
F. Toschi
H.J.H. Clercx

Technische Universiteit Eindhoven
University of Technology

Where innovation starts
Content

- Introduction
- Interpolation
 - Performance
 - Consequences
- Summary and outlook

Introduction

Fluid
- Isotropic turbulence
- DNS simulations
- Pseudo spectral code
- Tri-periodic domain

Particles
- Lagrangian tracking
- One-way coupling
- Small light spherical particles
- Maxey & Riley equations
Introduction

- Light particles
- Bed-load sediments
 - Pattern formation
 - Turbidity currents
- Plankton aggregates
Criteria for interpolation methods

• High order of convergence
• High order of smoothness
• Small number of FFTs
• Small overall errors
Interpolation methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Order of convergence</th>
<th>Order of smoothness</th>
<th>FFT</th>
<th>Overall errors</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagrange Interpolation</td>
<td>N-1</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>For even N</td>
</tr>
<tr>
<td></td>
<td>N-1</td>
<td>-1</td>
<td>1</td>
<td>-</td>
<td>For odd N</td>
</tr>
<tr>
<td>Spline interpolation</td>
<td>N-2</td>
<td>(N-2)/2</td>
<td>1</td>
<td>-</td>
<td>Only even N</td>
</tr>
<tr>
<td>Hermite interpolation</td>
<td>N-1</td>
<td>(N-2)/2</td>
<td>8</td>
<td>+</td>
<td>Only even N</td>
</tr>
<tr>
<td>B-spline interpolation</td>
<td>N-1</td>
<td>N-2</td>
<td>1</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>
B-spline functions

\[B_{(1)} \]

\[B_{(2)} \]

\[B_{(3)} \]

\[B_{(4)} \]
B-spline interpolation

- 2 steps:
 - transformation to B-spline basis
 - carry out the interpolation
- Transformation efficiently done in Fourier space
- Fast algorithm for interpolation
Relative interpolation error

![Graph showing relative interpolation error for different methods: linear, Lagrange, spline, Hermite, and B-spline. The x-axis represents $k\Delta x$ and the y-axis represents error on a log scale.]
Discretisation error

- Re=275
- $K_{\text{max}} \eta = 1.8$
- $K_{\text{max}} \eta = 3.7$
Error interpolation

The graph shows the error interpolation for different types of interpolation methods: linear, Lagrange, spline, Hermite, and B-spline. The x-axis represents the parameter k, and the y-axis represents the error on a logarithmic scale. The graph illustrates how each method's error varies with k. For example, the linear method shows a gradual increase in error, while the Lagrange method displays a more complex behavior. The spline method exhibits a different pattern, and the Hermite and B-spline methods have distinct error profiles as well.
Comparison errors

- Error ratio = \frac{\text{Interpolation error}}{\text{Discretisation error}}

- Linear inter. (N=2): \quad 3.7
- Lagrange inter. (N=4): \quad 0.50
- Spline inter. (N=4): \quad 0.63
- Hermite inter. (N=4): \quad 0.06
- B-spline inter. (N=4): \quad 0.08
Lagrangian error

- Testing the theory
- Time evolvement of error
- Evolving tracers with different interpolation methods
- Comparison with a simulation of double grid resolution
Lagrangian error of tracers

- Linear N=2
- B-spline N=2
- B-spline N=4
- L^4
- L^2
- L^1

The graph shows the error as a function of time (t) on a logarithmic scale for different methods and norms.
Lagrangian error of tracers

![Graph showing error with different models and time]

- Linear $N=2$
- B-spline $N=2$
- B-spline $N=4$
- L^4
- L^2
- L^1
Lagrangian error at Kolmogorov time scale

\[\log_{10}(error) \]

- Lagrange
- Spline
- B-spline
- Hermite

\(N \) vs. error

- Error decreases with increasing \(N \)
- Lagrange method shows the least error
- Hermite method has a higher error compared to Lagrange
Lagrangian error double grid resolution

![Graph showing error versus N (natural logarithmic scale) for different methods: Lagrange, Spline, B-spline, Hermite. The x-axis represents N, and the y-axis represents error. The graph illustrates the improved performance of Hermite and B-spline methods over Lagrange and Spline methods as N increases.](image-url)
Acceleration of particles

- Important for the calculation of forces on the particles
- Important for statistics
Acceleration of tracers

- linear $N=2$
- Lagrange $N=4$
- spline $N=4$
- B-spline $N=4$
- Hermite $N=4$
Acceleration of tracers

![Graph showing the acceleration of tracers with different interpolation methods and orders. The graph plots acceleration (a) against time (t) for linear, Lagrange, spline, B-spline, and Hermite interpolation methods. The graph includes a zoomed-in inset to highlight the behavior at specific time points.]
Acceleration spectrum

- Linear $N=2$
- Lagrange $N=4$
- Spline $N=4$
- B-spline $N=4$
- Hermite $N=4$
- Spectral
Acceleration spectrum

The graph shows various acceleration spectrum curves for different methods:
- Linear N=2
- Lagrange N=4
- Spline N=4
- B-spline N=4
- Hermite N=4
- Spectral

The x-axis represents the wave number (k), and the y-axis represents the acceleration spectrum (acc spectrum) on a logarithmic scale.
Energy in spectrum double grid resolution

![Graph showing energy in spectrum double grid resolution with different curves for Lagrange, Spline, B-spline, and Hermite methods.]
Optimal interpolation method

\[k_{\text{max}} = \frac{1}{3} N_g \]
Conclusions

• Advantages B-spline interpolation
 - High order of convergence
 - High order of smoothness
 - Low number of FFTs needed
 - Errors comparable with Hermite interpolation

• Methods for estimation interpolation error
 - Compare interpolation error with discretisation error
 - Linear interpolation not sufficient for our purpose
Questions ?
Optimal interpolation method

- Criteria: Error ratio < 1

\[k_{\text{max}} = \frac{\sqrt{2}}{3} N_g \]
\[
\text{real}(U_k) \quad \text{F}(U_k)
\]

\[
D \quad \Delta x, 2\Delta x \quad \text{F}(D)
\]

\[
\text{real}(U_kD) \quad \text{F}(U_kD)
\]
\[
\text{real}(U_k D) \quad \text{F}(U_k D)
\]

\[
\begin{align*}
\text{C} & \quad \text{F}(C) \\
\text{real}((U_k D) \ast C) & \quad \text{F}((U_k D) \ast C)
\end{align*}
\]
3D interpolation

- Sequence of 1D interpolations: fast
- 2 properties needed
- Superposition

Maxey & Riley equations

\[m_p \frac{du_p}{dt} = 6 \pi a \mu \left(u - u_p + \frac{1}{6} a^2 \nabla^2 u \right) + m_f \frac{Du}{Dt} - (m_p - m_f)g \hat{z} \]

\[+ \frac{1}{2} m_f \left(\frac{Du}{Dt} - \frac{du_p}{dt} + \frac{1}{10} a^2 \frac{d}{dt} (\nabla^2 u) \right) \]

\[+ 6 a^2 \rho \sqrt{\pi \nu} \int_{-\infty}^{t} K_B(t - \tau) \frac{df}{dt}(\tau) d\tau \]

\[= F_{St} + F_P + F_G + F_{AM} + F_B. \]
Maxey & Riley equations

\[
\frac{m_p}{dt} \frac{du_p}{dt} = 6\pi a \mu \left(u - u_p + \frac{1}{6} a^2 \nabla^2 u \right) + m_f \frac{Du}{Dt} - (m_p - m_f) g \hat{z} \\
+ \frac{1}{2} m_f \left(\frac{Du}{Dt} - \frac{du_p}{dt} + \frac{1}{10} a^2 \frac{d}{dt}(\nabla^2 u) \right) \\
+ 6a^2 \rho \sqrt{\pi} \nu \int_{-\infty}^{t} K_B(t - \tau) \frac{df}{d\tau}(\tau) d\tau
\]

\[
= F_{St} + F_P + F_G + F_{AM} + F_B.
\]

\[
K_B(t) = \frac{1}{\sqrt{t}}.
\]

\[
f(t) = u - u_p + \frac{1}{6} a^2 \nabla^2 u,
\]
Interpolation

High order interpolation vs linear interpolation

Accuracy vs Speed

Interpolation error vs discretisation error
Error for B-spline interpolation

- t_e = after one eddy turnover time
- t_K = at Kolmogorov time scale