Vortices and the Berezinskii-Kosterlitz-Thouless Transition in 2D Systems with Competing Order

Jonathan M. Fellows University of Warwick, UK J.Fellows@Warwick.ac.uk

Motivation
- Competition between different types of order is an important feature of many strongly correlated systems
- In such systems there may exist a fine-tuned point in parameter space where the symmetry of the order parameter is enhanced
- This symmetry enhancement is interesting in 2D because spontaneous symmetry breaking is forbidden due to Hohenberg-Mermin-Wagner theorem
- \(O(2) \) has a topological phase transition driven by vortices – the BKT transition
- Consider the effect of symmetry enhancement on vortices and the transition they mediate

Competing Orders
- Some examples
 - \(O(2) \times Z_2 \)
 - \(O(2) \times O(2) \)
 - \(O(2) \times O(3) \)

BKT Transition
- Vortex unbinding transition
- Action of a single vortex \(S_{\text{vtx}} = S_{\text{core}} + (\pi T) \ln R/a \)
- Core action \(S_{\text{core}} \sim \pi/2 \)
- Entropy of a single vortex \(s = 2 \ln R/a \)
- Transition temperature \(T_{\text{BKT}} \sim \pi/2 \)
- Fugacity density \(z = y/a^2 = \exp(-S_{\text{core}})/a^2 \)
- RG flow equations:
 \[
 \frac{dT(\ell)}{d\ell} = 4\pi y(\ell)^2, \quad \frac{dy(\ell)}{d\ell} = (2 - \pi T(\ell)^2) y(\ell)
 \]

BKT near Symmetry Enhancement
- We consider the \(O(2) \times O(M) \) EP-NLSM
- For \(\Delta \gg 0 \) this system is basically the \(O(2) \) model so we expect to see a BKT transition
- At \(\Delta = 0 \) vortices are no longer possible so the transition temperature must vanish
- We investigate how the system passes between the two known limits as \(\Delta \) is decreased
 - We take two approaches, starting from the two limits we understand well
 1. Starting from large \(\Delta \), we make a variational ansatz of a modified vortex and minimize the action to find the associated transition temperature
 2. Starting from small \(\Delta \), we treat the anisotropy as a perturbation upon the \(O(2 + M) \) nonlinear sigma model and investigate the RG flow

Symmetry Enhancement
- Not generic but common to the listed examples
- Particular point in parameter space where we can freely rotate between the two sectors of the order parameter
- Enhanced symmetry point has consequences for the rest of the phase diagram

Easy Plane Nonlinear Sigma Model
- Based on general principles of symmetry and universality (or in some cases directly from microscopics) we construct model action for competing phases
- \[
 S = \frac{1}{2\pi} \int dR \left\{ \langle \nabla \vec{\sigma} \rangle^2 + \frac{\lambda}{4!} \vec{\sigma} : D \vec{R} \right\}
 \]
- Lattice length scale = System size \(R \)
- Anisotropy between phases \(\Delta \)
- For \(\Delta = 0 \) symmetry is enhanced \((O(M) \times O(N)) \rightarrow (O(M + N)) \)

Modified Vortices
- There are two things that make the action of a single vortex big
 - System size \(R \) – disappears when we study a vortex plasma
 - Lattice spacing \(a \) – the size of the vortex core
- There is a formally divergent energy at the centre of the vortex due to the singularity
- For finite \(\Delta \) a vortex can lower its energy by having the field point out of the \(O(2) \) plane into the suppressed phase
- We make the simple ansatz of a modified vortex excitation that looks like a normal vortex beyond some core radius \(\xi \) but points straight into the suppressed phase below \(\xi \)
 - The action contribution of a single such modified vortex is
 \[
 S_{\text{vtx}}(\xi, \ell) = \pi \frac{\Delta}{2a^2} + \pi \frac{R}{\xi} \]
 - Minimizing the action w.r.t. \(\xi \) we find an optimal core size \(\xi_{\text{opt}} = a/\sqrt{\Delta} \)
- The action of the core itself is unaffected by the increased core size \(S_{\text{core}} = \pi \frac{\Delta}{2a^2} = \pi \frac{R}{\xi} \)

Change in Transition Temperature
- The RG flow equations for the standard corrections to the BKT transition temperature
- The factor of \(a \) here comes from starting the RG at the vortex core size so this \(a \rightarrow \xi \)
- \(\Delta \) is the definition of \(a \) as unchanged as it comes from enumerating possible positions of the vortex
- The BKT transition temperature for modified vortices is therefore
 \[
 T_{\text{BKT}} = \frac{\pi}{2 + \pi a^2 z(1/T_{\text{BKT}})} \Rightarrow T_{\text{BKT}} \sim \frac{1}{\ln(1/\Delta)}
 \]

Change in Transition Temperature
- The RG flow equations for the standard corrections to the BKT transition temperature
- The factor of \(a \) here comes from starting the RG at the vortex core size so this \(a \rightarrow \xi \)
- \(\Delta \) is the definition of \(a \) as unchanged as it comes from enumerating possible positions of the vortex
- The BKT transition temperature for modified vortices is therefore
 \[
 T_{\text{BKT}} = \frac{\pi}{2 + \pi a^2 z(1/T_{\text{BKT}})} \Rightarrow T_{\text{BKT}} \sim \frac{1}{\ln(1/\Delta)}
 \]

RG Flow of the EP-NLSM
- Treating the anisotropy as a perturbation on the \(O(2 + M) \) NLSM we find RG equations up to one loop to be
 \[
 \frac{dT(\ell)}{d\ell} = T(\ell)^2 M \frac{\Delta(\ell)}{2 + \pi \Delta(\ell)} \Rightarrow T(\ell) = \frac{T(0)}{2 + \pi \Delta(0)} \]
- We flow the RG until \(\Delta \) is of order 1 and then apply regular BKT arguments
- We stop the flow at the scale \(\ell^* \) at which \(\Delta(\ell^*) = 1 \)
- If \(T(\ell^*) < \pi/2 \) then the system flows into the \(O(2) \) ordered regime
- We trace the flow back to find the bare value of temperature \(T_{\text{BKT}} \) corresponding to \(T(\ell^*) \) as a function of \(\Delta \)
- For small \(\Delta \) we find that \(T_{\text{BKT}} \sim 1/\ln(1/\Delta) \)
- Confirms prediction of our variational analysis
- We can use the RG trajectories to sketch a phase diagram

The vortex expands as \(\xi \sim 1/\sqrt{\Delta} \) and is ultimately destroyed from within
- The transition temperature vanishes as \(T \sim 1/\ln(1/\Delta) \)

References

If you have any questions or comments and I am not next to my poster please come and find me!