BEC to BCS crossover: Excitons, cold atoms, polaritons

Peter Littlewood
Argonne National Laboratory and University of Chicago
Vanilla theory of a condensate

BEC Superconductor Density wave Exciton

\[\langle \Psi \rangle = \langle b_0 \rangle = \sum_k \langle c_k c_{-k} \rangle = \sum_k \langle c_k^\dagger + Q c_k \rangle = \sum_k \langle c_{1,k}^\dagger c_{2,k} \rangle = \Delta e^{i\phi} \]

Energy

Amplitude “Higgs” mode

Phase “Bogoliubov” mode

Superfluid stiffness determines phase mode velocity

Momentum

BEC-BCS
In reality, there are more scales

- Bandwidth E_F
- Pairing energy "Gap" 2Δ
- Scattering length ℓ^{-1}
- Interaction range r_0^{-1}
- Fermi momentum k_F
- Lattice constant a^{-1}
- Energy
- Coherence length $1/\xi$
- Momentum

BEC-BCS
Intuitively: two limits

- **BEC** – thermal physics dominated by phase fluctuations
 - soft phase mode, low density, weak interaction between pairs
- **BCS** – thermal physics dominated by pair-breaking
 - stiff phase mode, high density, weak binding of pairs
Outline

- **Excitons** – a toy problem of density-driven crossover
 - following Keldysh, Comte and Nozieres
- **Cold atoms** – interaction-driven crossover
 - following Leggett, Nozieres and Schmitt-Rink
 - generalisation to non-zero density
- **Polaritons**
 - two kinds of crossover
 - dynamics
Hydrogenic Excitons

Conduction Band Electron

Exciton wave-packet

Valence Band Hole

Energy

Momentum

Bohr radius $a_B \sim \text{few nm}$

BEC-BCS
Mean field theory of excitonic insulator

\[\Phi^\dagger |0\rangle = \sum_k \phi(k) a_{ck}^\dagger a_{vk} |0\rangle \]

\[e^{\lambda \Phi^\dagger} |0\rangle = \prod_k \left[u(k) + v(k) a_{ck}^\dagger a_{vk} \right] |0\rangle \]

A coherent state – like a laser
Bose condensation of excitons

\[\nu(k) = \lambda \phi(k) \]

BCS-like instability of Fermi surfaces

Special features: order parameter; gap

\[\langle a_{ck}^\dagger a_{vk} \rangle = u_k \nu_k = (\Delta_k / 2E_k); \]
\[E_k = \sqrt{(\epsilon_k - \mu)^2 + \Delta_k^2} \]

Wavepacket of bound e-h pair
Composite boson
Excitation spectra

$+(-)E_k$ is energy to add (remove) particle-hole pair from condensate (total momentum zero)

\[
E_k = \sqrt{(\epsilon_k - \mu)^2 + \Delta_k^2}
\]

- **Band energy**
- **Chemical potential** (<0 for bound exciton)
- **Correlation energy**

Low density $\mu < 0$
- Chemical potential below band edge

High density $\mu > 0$
- No bound exciton below band edge

Absorption

Emission

BEC-BCS
2D exciton condensate: Mean field solution

Model: 2D quantum wells separated by distance = 1 Bohr radius Zhu et al PRL 74, 1633 (1995)
Crossover from BCS to BEC

Smooth crossover between BCS-like fermi surface instability and exciton BEC

Model: 2D quantum wells separated by distance = 1 Bohr radius Zhu et al PRL 74, 1633 (1995)
2D BEC - no confining potential

Interpolation (by hand) between two limits

$$k_B T_0 = Ry^* \exp(-1/2r_s)$$

$$Ry^* = \frac{m^*/m}{\epsilon^2} \times \text{Rydberg}$$

$$a_0^* = \frac{\epsilon}{m^*/m} \times a_{Bohr}$$

$$r_s^2 = \frac{1}{\pi n a_0^*2}$$

GaAs CQW

T = 4 K

n = 3 x 10^{11} \text{ cm}^{-2}

Plasma

"Preformed pair"

Mean field - should be K-T transition, but OK to estimate energy scales

BEC - no confining potential
BCS-BEC crossover via Feshbach resonance

- Natural parameter in cold atom problem
 \[\eta = (k_F a_0)^{-1} \]
 - \(a_0 \) is scattering length
- Compare to excitons
 \[r_s = \left(\frac{9\pi}{4} \right)^{1/3} (k_F a_B)^{-1} \]
- Choose model potential of a short-range gaussian with depth \(V_0 \), and range \(r_0 \)

Well-known physics – Leggett; Nozieres & Schmitt-Rink; Randeria
Occupancy

\[\eta = (a_0 k_F)^{-1} \]

\[\eta = \{2.16, 1.63, 1.29, 1.07, 0.80, 0.59, 0.42, 0.15, -0.50, -9.70\} \]
Condensate wavefunction

\[\eta = (a_0 k_F)^{-1} \]

Values:
- 2.16
- 1.07
- 0.59
- 0.15
- -0.50
- -9.70
Excitation spectrum
Comparison to low density limit

- "Universal" result in terms of single parameter η in the low density limit (Leggett)

\[\eta = (k_F a_0)^{-1} \]

Fix density, vary scattering length

Fix scattering length, vary density
Polaritons: Matter-Light Composite Bosons

\[|\text{pol}\rangle = c_1 |\text{exc}\rangle + c_2 |\text{ph}\rangle \]

\[\text{Effective Mass } m^* \sim 10^{-4} m_e \]
\[T_{\text{BEC}} \sim 1/m^* \]

[C. Weisbuch et al., PRL 69 3314 (1992)]
Polaritons and the Dicke Model - a.k.a. Jaynes-Tavis-Cummings model

Excitons are spins (generalization to e-h liquid by Ogawa et al.)

Spins are flipped by absorption/emission of photon

\[H = \omega \psi^\dagger \psi + \sum_i \epsilon_i S_i^z + \frac{g}{\sqrt{N}} \sum_i \left[S_i^+ \psi + \psi^\dagger S_i^- \right] \]

\[N \sim \left(\frac{\text{photon wavelength}}{\text{exciton radius}} \right)^d \gg 1 \]

Mean field theory – i.e. BCS coherent state – expected to be good approximation

\[|\lambda, w_i\rangle = \exp \left[\lambda \psi^\dagger + \sum_i w_i S_i^+ \right] |0\rangle \]

\[T_c \approx g \exp \left(-\frac{1}{gN(0)} \right) \]

Transition temperature depends on coupling constant

BEC-BCS
Condensation in the Dicke model (g/T = 2)

Increasing excitation density

Upper polariton

Lower polariton

Chemical potential (normal state)

Excitation energies (condensed state)

Coherent light

Chemical potential (condensed state)

No inhomogeneous broadening

Δ = ω − ε = 0

(Δ/ω)_{ex} = g/\sqrt{\rho_{ex}}

PR Eastham and PBL, PRB, 64, 235101 (2001)
Compare condensed polaritons to superconductor

\[\omega \]

Particle-hole continuum

\[2\Delta \]

Amplitude mode

Phase mode

\[\frac{1}{\xi} \]

\[k \]

NB $2\Delta/E_F \ll 1; \ k_F\xi \ll 1$

Phase mode – LP
Amplitude mode – UP
Continuum – inhom. broadening

Keeling 2006

BEC-BCS
Beyond mean field: Interaction driven or dilute gas?

- Conventional “BEC of polaritons” will give high transition temperature because of light mass m^*
- Single mode Dicke model gives transition temperature $\sim g$

Which is correct?

$$k_B T_0 \approx \frac{\hbar^2}{2m} n$$

$$\left(\frac{g}{\hbar^2/2ma_0^2} \right) \times \left(\frac{m^*}{m} \right) \approx 10^{-4}$$

$a_o = \text{characteristic separation of excitons}$

$$a_o > \text{Bohr radius}$$

Dilute gas BEC only for excitation levels $< 10^9 \text{ cm}^{-2}$ or so

A further crossover to the plasma regime when $na_B^2 \sim 1$
Phase diagram:

- T_c suppressed in low density (polariton BEC) regime and high density (renormalised photon BEC) regimes
- For typical experimental polariton mass $\approx 10^{-5}$ deviation from mean field is small

Keeling et al. PRL 93, 226403 (2004)
Dictionary of broken symmetries

- Connection to excitonic insulator generalises the BEC concept – different guises

\[e^{\lambda \sum_k \phi_k a_{ck}^{\dagger} a_{vk}} = \prod_k \left[1 + \lambda \phi_k a_{ck}^{\dagger} a_{vk} \right] \]

- Rewrite as spin model

\[S_i^+ = a_{ci}^{\dagger} a_{vi} ; \quad S_i^z = a_{ci}^{\dagger} a_{ci} - a_{vi}^{\dagger} a_{vi} \]

- XY Ferromagnet / Quantum Hall bilayer / triplons (BaCuSiO)

\[|w_i\rangle = e^{\sum_i w_i S_i^+} |0\rangle \]

- Couple to an additional Boson mode:
 photons -> polaritons;
 molecules -> cold fermionic atoms near Feshbach resonance

\[|\lambda, w_i\rangle = \exp[\lambda \psi^{\dagger} + \sum_i w_i S_i^+] |0\rangle \]
Spontaneous dynamical coherence

Paul Eastham and Richard Phillips PRB 79 165303 (2009)

Pump generates non-eq. distribution of excitons

\[\langle P_{k=0} \rangle \]
\[\langle \psi_{k=0} \rangle \]

are macroscopic - scaling with \(N^{1/2} \)

⇒ A condensate of both photons and k=0 excitons
⇒ Ringing produced by dynamical amplitude oscillations
⇒ Mean field assumed: i.e. keep only momenta of pump and k=0
Full nonlinear semiclassical dynamics

Quasienergy spectrum of oscillating system

- **Red lines** – derived from phase modes (LP)
- **Black lines** – amplitude modes (UP)
- **Unstable regimes** when $\text{Im} \lambda$ nonzero (Blue crosses)
Unstable regimes

OPO – like instability
amplitude modes pump phase

Attractive interaction
between amplitude fluctuations

Spectrum of dilute Bose gas with
weak attractive interactions
Ginzburg - Landau analysis

\[
\begin{align*}
\frac{i}{\partial t} \psi &= \left(\omega_0 - \frac{\hbar^2}{2m_{ph}} \nabla^2 \right) \psi + \frac{\Omega_R}{2} \left(1 - \lambda |P|^2 \right) P \\
&\quad - i \gamma \psi + \xi + F, \\
\frac{i}{\partial t} P &= E P + \frac{\Omega_R}{2} \left(1 - \lambda |P|^2 \right) \psi.
\end{align*}
\]

Lower and upper polariton resonantly pumped

Upper polariton resonantly pumped

Long-wavelength instability appears to develop spatio-temporal chaos
Conclusions

Main distinction between two regimes is in dynamics

- **Cold atoms**
 - no density driven crossover: dilute gas limit except at unitarity

- **Excitons**
 - crossover from BEC to BCS (i.e. electron-hole pair) when $r_s \sim 1$

- **Polaritons**
 - crossover from polariton BEC to polariton coherent state when $r_s = 10^{-4}$
 - crossover to electron-hole polariton when $r_s \sim 1$
 - however, dissipation will likely drive weak coupling laser before this

- **Electron superconductors**
 - still no confirmed examples

- **Charge and spin density waves**
 - considerable debate over role of pair-breaking vs. decoherence
Acknowledgements

Paul Eastham (Trinity College Dublin)
Jonathan Keeling (St Andrews)
Francesca Marchetti (Madrid)
Meera Parish (UCL)
Marzena Szymanska (Warwick)
Richard Brierley (Cambridge)
Sahinur Reja (SINP/Cambridge)
Cele Creatore (Cambridge)

Collaborators: Richard Phillips, Jacek Kasprzak, Le Si Dang, Alexei Ivanov, Leonid Levitov, Richard Needs, Ben Simons, Sasha Balatsky, Yogesh Joglekar, Jeremy Baumberg, Leonid Butov, David Snoke, Benoît Deveaud, Georgios Roumpos, Yoshi Yamamoto