Converging Flows and the Formation of Molecular Clouds
The Star Formation Region W43 as a Case Study

C+ Workshop, Lorentz Center, Leiden

Philipp Carlhoff

1. Physikalisches Institut, Universität zu Köln

February 6, 2012
Project Collaborators

P. Schilke (Universität zu Köln)
F. Motte (CEA Saclay)
Q. Nguyen Luong (University of Toronto)
N. Schneider, S. Bontemps (Université Bordeaux I)
R. Simon, V. Ossenkopf (Universität zu Köln)
F. Schuller, F. Wyrowski (MPIfR)
H. Beuther (MPIA)
T. Pillai, J. Carpenter (Caltech)
Star formation

- Stars form in cold and dense molecular clouds
- Initial gas is hot and atomic
- HI is a bistable gas (WNM and CNM)
- Molecular gas condensates from CNM
- Transition from atomic to molecular gas needs locally enhanced density regions

- Transition mechanism needs to be described
Time scales

- Assuming static initial gas yields unrealistically long formation timescales of molecular clouds
 - Glover & Mac Low (2007) find timescales of $\geq 10^7$ yr
 - Coagulation models of Blitz & Shu (1980) derive $\sim 10^8$ yr
- We know that molecular clouds form on the scale of a few Myr
 - We need something that works faster
Density fluctuations and gravity

- Density enhancements needed for stars to form
- These regions already form during the cloud formation phase
- Global gravity can sweep up material at the edges of clouds
- But density seeds inside the clouds are needed for collapse
- Density seeds must appear early and have to be non-linear

- Gravity cannot be the only cause
Possible models

Two categories of models come into consideration

- Turbulence
- Converging gas streams
Converging flows

- Collision of hot atomic gas streams
- Density variations and added ram pressure at collision point form CNM
- CNM can then become molecular
- Fluctuations form even if flows are smooth
- Clumps are bounded by sharp density jumps

Banerjee et al. 2009
Filaments and core formation

- Filaments form in collision plane
- Molecular clouds keep growing, mass flow across cloud borders
- Dense cores form along filaments
- Precursors of forming stars
- Magnetic fields can stabilize filaments

Fiege & Pudritz 2000
Question of star age

- Little variation in the age of stars that are close together is observed
- Variation would be larger if filaments would form spontaneously
- Converging flows lead to same cloud formation time across the collision plane

▶ Age of stars is similar
Cooling

- Proper heating and cooling mechanisms have only been included since 2005 (e.g. Audit & Hennebell 2005)
- Cooling works very effectively, leading to molecular cloud formation in a few Myr
- Typical coolants are metal fine structure lines (\text{CII}, \text{OI}, \text{SII})
 - \text{CII} as a tracer of the transition from atomic to molecular gas
 - Herschel/SOFIA observations
The W43 Complex

- Identified by Motte et al. 2003
- One of the most luminous and massive star forming regions in the Galaxy
- Located at the junction of Galactic spiral arms and Bar
- Intersection of circular and elliptic orbits
- Ideal place to study effects of colliding gas flows
IRAM 30m project overview

- 80h observation time with the IRAM 30m
- Observing large scale maps in 13CO (2-1) and 18C1O (2-1) of the whole region:
- Probe low- to mid-density parts of molecular clouds
- Map structure and kinematics of clouds
- Beam size: $12'' \rightarrow 0.35$ pc
- Spectral resolution 0.15 km/s
Resulting map

- Distance: 6 kpc
- Linear size of ~ 150 pc
- Mass of $> 10^6 M_\odot$
- Velocity range: 80 - 120 km/s
- Structure across all scales
- Shear effects should play a minor role (calculated from Dib et al. 2012)
Position velocity diagram
HI absorption

Nguyen Luong et al. 2011

Integrated over 80–110 km/s
Colour: HI
Contour: 13CO 1–0

Phylllip Carlhoff
1. Physikalisches Institut, Universität zu Köln
Converging Flows and the Formation of Molecular Clouds
HI absorption spectra

Spectrum in W43–Main (18:47:38.182 –01:57:46.53)

- HI
- 13CO (2–1)

Credits HI: H. Beuther

Philipp Carlhoff
1. Physikalisches Institut, Universität zu Köln
Converging Flows and the Formation of Molecular Clouds
HIFI target

• Pick one filament
• Size: 12 \times 8 pc
• Mass: 6000 M_{\odot}
• Estimated density: 10^3 cm$^{-3}$
• Velocity range: 4 km/s
HIFI target

- Dust emission visible
- No emission in 8 μm band (not just distance effect)
- No near UV-sources
Herschel space telescope

- 10h granted to observe C\(^+\) OTF-map
- Beam size of 12” matches IRAM 30m maps
- Spectral resolution of \(\sim 0.1 \text{ km/s}\)
The C$^+$ map

Converging Flows and the Formation of Molecular Clouds

Philipp Carlhoff

1. Physikalisches Institut, Universität zu Köln
Spectra at clump maximum

![Graph showing spectral data with labels for CII, 19C0 (2–1), and CO (8–5).]
The C^+ map properties

![Map of C^+ peak velocity](image1)

![Map of C^+ line width](image2)
Combination with CARMA data

- Reveals layered structure
- Typical filament formation as seen in models
- Assuming layers have mostly dynamical origin
- Mass flow across filament borders
Conclusions

- Dynamic formation of molecular clouds is necessary to explain observed star formation
- The Converging Flows model is one possible explanation
- Signature of dynamic formation of dense molecular cloud is observed
- Can we somehow distinguish different theories of cloud formation?