Balancedness and Martin-Löf randomness in cellular automata

Silvio Capobianco

Institute of Cybernetics at TUT

Representing Streams II, Leiden
January 27, 2014

Joint work with Pierre Guillon (CNRS & IML Marseille) and Jarkko Kari (Mathematics Department, University of Turku)
Introduction

- In 1966 Martin-Löf gave a formal answer to the question: what does it mean for a single object to be random?
- Martin-Löf’s ideas were expanded by Hertling and Weihrauch, who adapted them to a very large class of systems.
- Cellular automata (CA) are uniform, synchronous model of parallel computation on regular grids, where the next state of a point is a function of the current state of a finite neighborhood of the point.
- Bartholdi’s theorem characterizes amenable groups (a class introduced by von Neumann) as those where all surjective CA have specific properties.
- First, we apply the Hertling-Weihrauch methodology to define Martin-Löf randomness for configurations on groups, under suitable hypotheses.
- Then, we extend a 2001 result by Calude et al. by proving a Bartholdi-like condition for amenability of groups.
Any one who considers arithmetic methods of producing random digits is, of course, in a state of sin. For, as has been pointed out several times, there is no such thing as a random number—there are only methods to produce random numbers, and a strict arithmetical procedure is of course not such a method.

John von Neumann
What does it mean to be random?

0000000000000000000000000000000000 ...

0101010101010101010101010101010101 ...

0100011011000001010011100101110111 ...

0011011010110101100001011010111110 ...

0011011010110101100001011010111110 ...
Martin-Löf’s idea of randomness

The basic idea is:

a random sequence should possess
every conceivable property of stochasticity

- This includes at least definitions such as incompressibility
 — as “very few” strings are compressible
- This also includes normality: every finite subsequence of given length
 should appear with the same asymptotic frequence.
- In particular, random sequences would display no “conceivable”
 regularities.

But what does “conceivable” mean?
A sequential Martin-Löf test (briefly, M-L test) is a recursively enumerable $U \subseteq \mathbb{N}_+ \times A^*$ such that the level sets $U_n = \{x \in A^* | (n, x) \in U\}$ satisfy the following conditions:

1. For every $n \geq 1$, $U_{n+1} \subseteq U_n$.
2. For every $n \geq 1$ and $m \geq n$, $|U_n \cap A^m| \leq |A|^{m-n}/(|A| - 1)$.
3. For every $n \geq 1$ and $x, y \in A^*$, if $x \in U_n$ and $y \in xA^*$ then $y \in U_n$.

$w \in A^\omega$ fails a sequential M-L test U if $w \in \bigcap_{n \geq 0} U_n A^\omega$.

w is Martin-Löf random if w does not fail any sequential M-L test.

- If $\eta : \mathbb{N} \rightarrow \mathbb{N}$ is a computable bijection, then w is M-L random if and only if $w \circ \eta$ is M-L random.
Prodiscrete topology and product measure

The prodiscrete topology of the space A^ω of infinite words is generated by the fundamental cylinders

$$wA^\omega = \{ u \in A^\omega \mid u[0:|w|-1] = w \} , \ w \in A^*$$

- Two infinite words are “near” if they have a “long” common prefix.
- Long prefix of $w + M$-L random word = M-L random word “near” w.
- Long prefix of $w + a^\omega = non-M$-L random word “near” w.

The fundamental cylinders also generate the Borel σ-algebra where the product measure induced by

$$\mu_\Pi(wA^\omega) = |A|^{-|w|}$$

is well defined.
Presentations of groups

Let S be a set. Construct $S^{-1} = \{s^{-1} \mid s \in S\}$. Let $(s^{-1})^{-1} = s$.
Let $R \subseteq (S \cup S^{-1})^*$. The group G has the presentation $\langle S \mid R \rangle$ if $G \cong F_S/K_R$, where:

- F_S is the free group of the reduced words on $S \cup S^{-1}$.
- K_R is the normal subgroup of F_S generated by R.

If S is finite we say that G is finitely generated.
If R is finite too we say that G is finitely presented.

The word problem for the group $G = \langle S \mid R \rangle$ is the set of words on $S \cup S^{-1}$ that represent the identity element of G.

- Decidability of the word problem depends on the group, but not on the presentation.
- The word problem is decidable for free groups, \mathbb{Z}^d, etc.
Computable groups

An admissible indexing of a group G is a computable bijection $\phi : \mathbb{N} \to G$ such that there exists a computable function $m : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ satisfying

$$\phi(i) \cdot \phi(j) = \phi(m(i, j)) \quad \forall i, j \in \mathbb{N}$$

- We may write g_i instead of $\phi(i)$.
- If G is computable, then there is also a computable function $\iota : \mathbb{N} \to \mathbb{N}$ such that $g_i^{-1} = g_{\iota(i)}$ for every $i \in \mathbb{N}$.

Theorem (Rabin, 1960)

A finitely generated group has an admissible indexing if and only if it has decidable word problem.
Prodiscrete topology and product measure on A^G

The **prodiscrete topology** of the space A^G of configurations over G is generated by the cylinders

$$C(E, p) = \{c \in A^G \mid c|_E = p\}$$

where $E \subseteq G$, $0 < |E| < \infty$, and $p : E \to A$ is a pattern.

- Two configurations are “near” if they are equal on a “large” finite set.
- Parallel with infinite words: $wA^\omega = C(\{0, \ldots, |w| - 1\}, w)$.

The cylinders also generate a σ-algebra Σ_C, on which the **product measure** induced by

$$\mu_\Pi(C(E, p)) = |A|^{-|E|}$$

is well defined.

- Σ_C is **not** the Borel σ-algebra unless G is countable.
Enumerating the cylinders

Let $A = \{a_0, \ldots, a_{k-1}\}$ be a k-ary alphabet.

Let $\phi : \mathbb{N} \rightarrow G$ be an admissible indexing.

- First, we enumerate the elementary cylinders

$$B_{ki+j} = C(g_i, a_j) = \{c \in A^G \mid c(g_i) = a_j\}$$

which form a subbasis of the prodiscrete topology.

- Next, we define a bijection $\Psi : \mathcal{P}(G) \rightarrow \mathbb{N}$ by

$$\Psi(X) = \sum_{i \in X} 2^i$$

(so that $\Psi(\emptyset) = 0$)

- Finally, we enumerate the cylinders as

$$B'_n = \bigcap_{i \in \Psi^{-1}(n+1)} B_i$$
Martin-Löf randomness for configurations

Let \(\mathcal{U} = \{U_i\}_{i \geq 0}, \mathcal{V} = \{V_j\}_{j \geq 0} \subseteq \mathcal{P}(A^G) \) be families of open sets.

- We say that \(\mathcal{U} \) is \(\mathcal{V} \)-computable if there exists a r.e. \(T \subseteq \mathbb{N} \) such that
 \[
 U_i = \bigcup_{\pi(i,j) \in T} V_j \quad \forall i \geq 0
 \]
 where \(\pi(i, j) = (i + j)(i + j + 1)/2 + j \).

- A \(B' \)-computable family \(\mathcal{U} = \{U_n\}_{n \geq 0} \) of open subsets of \(A^G \) is a Martin-Löf \(\mu_\Pi \)-test if
 \[
 \mu_\Pi(U_n) \leq 2^{-n} \quad \forall n \geq 0
 \]

- \(c \in A^G \) fails \(\mathcal{U} \) if \(c \in \bigcap_{n \geq 0} U_n \).
- \(c \) is M-L \(\mu_\Pi \)-random if it does not fail any M-L \(\mu_\Pi \)-test.
A correspondence between Martin-Löf tests

Lemma (cf. Hertling and Weihrauch, 1998)
Let $\phi : \mathbb{N} \rightarrow G$ be an admissible indexing.

1. The function $\bar{\phi} : A^G \rightarrow A^\omega$ defined by
 \[\bar{\phi}(c) = c \circ \phi \]
 is a homeomorphism.

2. For every $U \in \Sigma_C$, $\mu_\Pi(\bar{\phi}(U)) = \mu_\Pi(U)$.

3. A family \mathcal{U} of open subsets of A^G is a M-L μ_Π-test if and only if the corresponding family $\bar{\phi}(\mathcal{U})$ of open subsets of A^ω is a M-L test.

Corollary The following are equivalent:

1. $c \in A^G$ is Martin-Löf μ_Π-random.
2. $c \circ \phi \in A^\omega$ is Martin-Löf random.
Cellular automata

A cellular automaton (CA) on a group G is a triple $\mathcal{A} = \langle A, \mathcal{N}, f \rangle$ where:

- A is a finite alphabet.
- $\mathcal{N} = \{n_1, \ldots, n_m\} \subseteq G$ is a finite neighborhood.
- $f : A^m \to A$ is a finitary local function.

The local function induces a global function $F : A^G \to A^G$ via

$$F_A(c)(x) = f(c(x \cdot n_1), \ldots, c(x \cdot n_m)) = f(c^x|_{\mathcal{N}})$$

where $c^x(g) = c(x \cdot g)$.

The same rule induces a function over patterns:

$$f(p) : E \to A \ , \ f(p)(x) = f(p^x|_{\mathcal{N}}) \ \forall p : E\mathcal{N} \to A$$
Balancedness

Let $E \subseteq G$, $0 < |E| < \infty$; let $\mathcal{A} = \langle A, \mathcal{N}, f \rangle$ be a CA on G. \mathcal{A} is \textit{E-balanced} if for every $p : E \to A$,

$$|f^{-1}(p)| = |A|^{|E\mathcal{N}|} - |E|$$

\mathcal{A} is \textit{balanced} if it is E-balanced for every $E \subseteq G$, $0 < |E| < \infty$. This is the same as saying that \mathcal{A} \textit{preserves} μ_{Π}, i.e.,

$$\mu_{\Pi} \left(F_{\mathcal{A}}^{-1}(U) \right) = \mu_{\Pi}(U)$$

for every open $U \in \Sigma_C$.
Some properties of surjective d-dimensional CA

Let $\mathcal{A} = \langle A, N, f \rangle$ be a CA on \mathbb{Z}^d. The following are equivalent.

1. \mathcal{A} is surjective.
2. \mathcal{A} is pre-injective, i.e., injective on every set of the form

 $$U_c = \left\{ e \in A^{\mathbb{Z}^d} : |\{ x \in \mathbb{Z}^d : c(x) \neq e(x) \}| < \infty \right\}$$

 (Moore and Myhill’s Garden-of-Eden theorem, 1962–63)

3. \mathcal{A} is balanced.
 (Maruoka and Kimura, 1976)

4. For every $c \in A^{\mathbb{Z}^d}$, if c is M-L μ_{Π}-random then so is $F_\mathcal{A}(c)$.
 (Calude, Hertling, Jürgensen and Weihrauch, 2001)
A counterexample on the free group

Let $G = \mathbb{F}_2$, $A = \{0, 1\}$, $\mathcal{N} = \{1_G, a, b, a^{-1}, b^{-1}\}$, and

$$f(\alpha) = \begin{cases}
1 & \text{if either } \alpha_a + \alpha_b + \alpha_{a^{-1}} + \alpha_{b^{-1}} = 3 \\
& \text{or } \alpha_a + \alpha_b + \alpha_{a^{-1}} + \alpha_{b^{-1}} \in \{1, 2\} \text{ and } \alpha_{1_G} = 1, \\
0 & \text{otherwise.}
\end{cases}$$

A is not balanced.

- The pattern $1_G \mapsto 1$ has 18 preimages instead of 16.

However, A is surjective.

- Let $E \in \mathcal{PF}(G)$ and let $m = \max \{ \|g\| \mid g \in E \}$.
- Each $g \in E$ with $\|g\| = m$ has three neighbors outside E.
- This allows an argument by induction.
A paradoxical decomposition of \mathbb{F}_2
Paradoxical groups

A paradoxical decomposition of a group G is a partition $G = \bigsqcup_{i=1}^{n} A_i$ such that, for suitable $\alpha_1, \ldots, \alpha_n \in G$,

$$G = \bigsqcup_{i=1}^{k} \alpha_i A_i = \bigsqcup_{i=k+1}^{n} \alpha_i A_i$$

A bounded propagation 2:1 compressing map on G is a function $\phi : G \to G$ such that, for a finite propagation set S,

- $\phi(g)^{-1}g \in S$ for every $g \in G$ (bounded propagation) and
- $|\phi^{-1}(g)| = 2$ for every $g \in G$ (2:1 compression)

A group has a paradoxical decomposition if and only if it has a bounded propagation 2:1 compression map. Such groups are called paradoxical.
Amenable groups

von Neumann, 1929:
A group G is amenable if there exists a finitely additive probability measure $\mu : \mathcal{P}(G) \to [0, 1]$ such that:

$$\mu(gA) = \mu(A) \text{ for every } g \in G, A \subseteq G$$

- Abelian groups are amenable.
- Groups with a free subgroup on two generators are not amenable.
- The vice versa of the previous point is false.
 (von Neumann conjecture; disproved by Ol’shanskii, 1980)

The Tarski alternative

Let G be a group. Exactly one of the following happens.

1. G is amenable.
2. G is paradoxical.
Bartholdi’s theorem (2010)

Let G be a group. The following are equivalent.

1. G is amenable.
2. Every surjective cellular automaton on G is pre-injective.
3. Every surjective cellular automaton on G is balanced.
An extension to Calude’s theorem

Let G be an amenable, finitely generated group with decidable word problem.

Let $\mathcal{A} = \langle A, \mathcal{N}, f \rangle$ be a CA on G.

- Finiteness of neighborhood and decidability of word problem:
 If U is B'-computable then so is $F_{\mathcal{A}}^{-1}(U)$.

- Preservation of product measure:
 If \mathcal{A} is surjective and U is a M-L μ_{Π}-test, then so is $F_{\mathcal{A}}^{-1}(U)$.

- Consequently:
 If \mathcal{A} is surjective and $F_{\mathcal{A}}(c)$ fails U, then c fails $F_{\mathcal{A}}^{-1}(U)$.

Summarizing:

for a finitely generated group G with decidable word problem:
 if G is amenable, \mathcal{A} is surjective, and c is M-L μ_{Π}-random,
 then $F_{\mathcal{A}}(c)$ is M-L μ_{Π}-random
Normality

An infinite word $w \in A^\omega$ is m-normal if for every $u \in A^m$

$$\lim_{n \to \infty} \frac{\left|\{i < n \mid w_{i:i+m-1} = u\}\right|}{n} = \frac{1}{|A|^m}$$

Note: M-L random infinite words are m-normal for every $m \geq 1$.

Theorem (Niven and Zuckerman, 1951)

w is m-normal as a word on A iff it is 1-normal as a word on A^m.

Let $h : \mathbb{N} \to G$, $E \subseteq G$, $0 < |E| < \infty$.
We say that $c \in A^G$ is h-E-normal if the infinite word

$$w \in (A^E)^\omega : w(i) = c^{h(i)} \big|_{E} = c|_{h(i)E} \quad \forall i \geq 0$$

is 1-normal. For $E = \{1\}$ we say h-1-normal.
Lemma 1

Let \(\mathcal{A} = \langle A, \mathcal{N}, f \rangle \) be a CA on \(G \), such that \(1 < |A|, |\mathcal{N}| \).

- Suppose \(\mathcal{A} \) has a spreading state \(q_0 \), i.e., if \(\alpha(x) = q_0 \) for some \(x \in \mathcal{N} \), then \(f(\alpha) = q_0 \).
- Let \(s, t \) be two distinct elements of \(\mathcal{N} \).
- Let \(h : \mathbb{N} \rightarrow G \) be injective.
- If \(c : G \rightarrow A \) is \(h\{-s, t\}\)-normal, then \(F_{\mathcal{A}}(c) \) is not \(h^{-1}\)-normal.

In particular:

\[
\text{if } c \text{ is } h-E\text{-normal for some } E \in \mathcal{P}\mathcal{F}(G) \text{ containing } \mathcal{N},
\text{then } F_{\mathcal{A}}(c) \text{ is not } h^{-1}\text{-normal.}
\]
A surjective CA with a spreading state

Guillon, 2011: improves Bartholdi’s counterexample.

Let G be a paradoxical group, ϕ a bounded propagation $2:1$ compressing map with propagation set S.
Define on S a total ordering \preceq.
Define a CA \mathcal{A} on G by $\mathcal{A} = (S \times \{0, 1\} \times S) \sqcup \{q_0\}$, $\mathcal{N} = S$, and

$$f(u) = \begin{cases}
q_0 & \text{if } \exists s \in S \mid u_s = q_0, \\
(p, \alpha, q) & \text{if } \exists!(s, t) \in S \times S \mid s \preceq t, u_s = (s, \alpha, p), u_t = (t, 1, q), \\
q_0 & \text{otherwise.}
\end{cases}$$

Then \mathcal{A}, although clearly non-balanced, is surjective.

* For $j \in G$ it is $j = \phi(js) = \phi(jt)$ for exactly two $s, t \in S$ with $s \preceq t$.
* If $c(j) = q_0$ put $e(js) = e(jt) = (s, 0, s)$.
* If $c(j) = (p, \alpha, q)$ put $e(js) = (s, \alpha, p)$ and $e(jt) = (t, 1, q)$.
* Then $F(e) = c$.
Relative randomness

$u \in A^\omega$ is M-L random relatively to $v \in A^\omega$ if it is M-L random when computability is considered according to Turing machines with oracle v.

Theorem (van Lambalgen, 1987)
Let $u, v \in A^\omega$ and let w be the interleaving of u and v:

$$w(i) = \begin{cases}
 u(j) & \text{if } i = 2j, \\
 v(j) & \text{if } i = 2j + 1.
\end{cases}$$

The following are equivalent.

1. w is M-L random.
2. u is M-L random, and v is M-L random relatively to u.
3. v is M-L random, and u is M-L random relatively to v.
A second key lemma

Lemma 2
Let G be an infinite f.g. group with decidable word problem. For every $E \subseteq G$ with $0 < |E| < \infty$ there exists a computable $h : \mathbb{N} \to G$ such that:

1. $h(\mathbb{N})$ is a recursive subset of G with infinite complement.
2. $h(n)E \cap h(m)E = \emptyset$ for every $n \neq m$.
 (In particular: h is injective.)
3. For any alphabet A, every M-L μ_Π-random $c \in A^G$ is h-E-normal.
 (This follows from van Lambalgen’s theorem and the previous points.)
An extension to Bartholdi’s theorem

Let G be a paradoxical, finitely generated group with decidable word problem.

Let A be the Guillon CA.

- Construct h as by Lemma 2 with $E = \mathcal{N} \cup \{1\}$.
- Let $c \in A^G$ be a M-L μ_{Π}-random configuration.
- By Lemma 2, c is both h-E- and h-1-normal.
- As A has a spreading state, by Lemma 1, F_A cannot be h-1-normal .
 . . .
- . . . thus not M-L μ_{Π}-random either!

Summarizing:

for a finitely generated group G with decidable word problem:
if G is paradoxical, then there exists a surjective CA A on G
such that, given any configuration c over G, at most one between c and $F_A(c)$ is M-L μ_{Π}-random
Conclusions

- Martin-Löf definition of randomness can be extended to several systems, including configurations over computable groups.
- A computable finitely generated group G is paradoxical if and only if there is a surjective CA on G such that every Martin-Löf random configuration has a nonrandom image and only nonrandom preimages.
- For arbitrary paradoxical groups, we actually prove (cf. C., Guillon and Kari, 2013) that there is always a full measure set U and a surjective CA A such that $F_A^{-1}(U)$ is a null set. This is a very serious failure for measure preservation!
- Do pre-injective, non-surjective CA exist on arbitrary paradoxical groups? (This holds if $\mathbb{F}_2 \leq G$, cf. Ceccherini-Silberstein et al, 1999)
- Are there injective CA which are not balanced? (If no such CA exists, then Gottschalk’s conjecture is true.)
Bibliography

Thank you for attention!

Any questions?