Two-sided Rauzy Induction

Francesco Dolce

Leiden, 23th January 2014

Joint work with

V. Berthé1, C. De Felice2, D. Perrin3, C. Reutenauer4 and G. Rindone3

1Université Paris Diderot, 2Università di Salerno, 3Université Paris Est, 4Université du Quebec à Montreal
Outline

1. Interval exchange transformations
 - Interval exchange transformations
 - Regular interval exchange transformations

2. Rauzy induction
 - Right Rauzy induction
 - Two-sided Rauzy induction

3. Natural coding
 - Natural coding
 - Regular interval exchange sets
 - Return theorem
Outline

1. Interval exchange transformations
 - Interval exchange transformations
 - Regular interval exchange transformations

2. Rauzy induction
 - Right Rauzy induction
 - Two-sided Rauzy induction

3. Natural coding
 - Natural coding
 - Regular interval exchange sets
 - Return theorem
Interval exchange transformations

Let \((A, <)\) be an ordered set and let \((I_a)_{a \in A}\) be an ordered partition of \([\ell, r]\).
A *interval exchange transformation* is a function \(T : [\ell, r] \rightarrow [\ell, r]\) defined by

\[
T(z) = z + \alpha_z \quad \text{if } z \in I_a.
\]
Regular interval exchange transformations

T is said to be \textit{minimal} if for any $z \in [\ell, r[$ the orbit $\mathcal{O}(z) = \{ T^n(z) \mid n \in \mathbb{Z} \}$ is dense in $[\ell, r[$.
Regular interval exchange transformations

T is said to be \textit{minimal} if for any $z \in [\ell, r[$ the orbit $\mathcal{O}(z) = \{ T^n(z) \mid n \in \mathbb{Z} \}$ is dense in $[\ell, r[$.

T is said \textit{regular} if the orbits of the separation points $\neq \ell$ are infinite and disjoint.

Theorem [Keane, 1975]

A regular interval exchange transformation is minimal.
A regular interval exchange transformation is minimal.

\(T \) is said to be \textit{minimal} if for any \(z \in [\ell, r[\) the orbit \(\mathcal{O}(z) = \{ T^n(z) \mid n \in \mathbb{Z} \} \) is dense in \([\ell, r[\).

\(T \) is said \textit{regular} if the orbits of the separation points \(\neq \ell \) are infinite and disjoint.

\textbf{Theorem [Keane, 1975]}

A regular interval exchange transformation is minimal.
Proposition

Let T be a regular s-interval exchange transformation. Then T^n is a regular $n(s - 1) + 1$-interval exchange transformation.
Proposition

Let T be a regular s-interval exchange transformation. Then T^n is a regular $n(s - 1) + 1$-interval exchange transformation.
Proposition

Let T be a regular s-interval exchange transformation. Then T^n is a regular $n(s - 1) + 1$-interval exchange transformation.
Proposition

Let T be a regular s-interval exchange transformation. Then T^n is a regular $n(s - 1) + 1$-interval exchange transformation.

$$J_b = T(I_b) \quad \alpha \quad J_a = T(I_a)$$

$$J_{ab} \quad J_{ba} \quad J_{aa}$$

$$J_{a_0a_1\ldots a_{m-1}} = T^m(I_{a_0}) \cap T^{m-1}(I_{a_1}) \cap \ldots \cap T(I_{b_{a-1}}) \quad \text{and} \quad I_w = T^{-|w|}(J_w)$$
Outline

1. Interval exchange transformations
 - Interval exchange transformations
 - Regular interval exchange transformations

2. Rauzy induction
 - Right Rauzy induction
 - Two-sided Rauzy induction

3. Natural coding
 - Natural coding
 - Regular interval exchange sets
 - Return theorem
Admissible semi-intervals

Let T be an interval exchange transformation on the semi-interval $[\ell, r[$. For $\ell < t < r$, the semi-interval $[\ell, t]$ is right-admissible for T if there is a $k \in \mathbb{Z}$ s.t. $t = T^k(\gamma_a)$ for some $a \in A$ and:

(i) if $k > 0$, then $t < T^h(\gamma_a)$ for all $0 < h < k$,

(ii) if $k \leq 0$, then $t < T^h(\gamma_a)$ for all $k < h \leq 0$,
Let T be an interval exchange transformation on the semi-interval $[\ell, r[$.
For $\ell < t < r$, the semi-interval $[\ell, t[$ is right-admissible for T if there is a $k \in \mathbb{Z}$ s.t. $t = T^k(\gamma_a)$ for some $a \in A$ and:

(i) if $k > 0$, then $t < T^h(\gamma_a)$ for all $0 < h < k$,
(ii) if $k \leq 0$, then $t < T^h(\gamma_a)$ for all $k < h \leq 0$,
Admissible semi-intervals

Let T be an interval exchange transformation on the semi-interval $[\ell, r]$.

For $\ell < t < r$, the semi-interval $[\ell, t]$ is right-admissible for T if there is a $k \in \mathbb{Z}$ s.t. $t = T^k(\gamma_a)$ for some $a \in A$ and:

(i) if $k > 0$, then $t < T^h(\gamma_a)$ for all $0 < h < k$,

(ii) if $k \leq 0$, then $t < T^h(\gamma_a)$ for all $k < h \leq 0$,

\[\begin{align*}
0 & \quad a & \quad 1-2\alpha & \quad b & \quad 1-\alpha & \quad c & \quad 1 \\
\gamma_c & \quad \alpha & \quad b & \quad c & \quad 2\alpha & \quad a & \quad 1 \\
\end{align*} \]
Let T be an interval exchange transformation on the semi-interval $[\ell, r[.$
For $\ell < t < r$, the semi-interval $[\ell, t[$ is right-admissible for T if there is a $k \in \mathbb{Z}$ s.t. $t = T^k(\gamma_a)$ for some $a \in A$ and:

(i) if $k > 0$, then $t < T^h(\gamma_a)$ for all $0 < h < k$,
(ii) if $k \leq 0$, then $t < T^h(\gamma_a)$ for all $k < h \leq 0$,

\begin{tikzpicture}

\draw[red] (0,0) -- (1,0) node[below] {a} -- (2,0) node[below] {$1 - 2\alpha$} -- (3,0) node[below] {b} -- (4,0) node[below] {$1 - \alpha$} -- (5,0) node[below] {c} -- (6,0) node[below] {1} node[above] {$T(\gamma_c)$};
\draw[blue] (0,-1) -- (1,-1) node[below] {α} -- (2,-1) node[below] {γ_c} -- (3,-1) node[below] {c} -- (4,-1) node[below] {2α} -- (5,-1) node[below] {a} -- (6,-1) node[below] {\bullet};
\draw[green] (1,-1) -- (2,-1) node[below] {b};
\draw[blue,->] (0.5,-1.5) arc (180:0:0.5) node[left] {T};
\end{tikzpicture}
Let T be an interval exchange transformation on the semi-interval $[\ell, r]$.

For $\ell < t < r$, the semi-interval $[\ell, t]$ is right-admissible for T if there is a $k \in \mathbb{Z}$ s.t. $t = T^k(\gamma_a)$ for some $a \in A$ and:

(i) if $k > 0$, then $t < T^h(\gamma_a)$ for all $0 < h < k$,
(ii) if $k \leq 0$, then $t < T^h(\gamma_a)$ for all $k < h \leq 0$,
Let \(T \) be an interval exchange transformation on the semi-interval \([\ell, r]\).
For \(\ell < t < r \), the semi-interval \([\ell, t]\) is **right-admissible** for \(T \) if there is a \(k \in \mathbb{Z} \) s.t. \(t = T^k(\gamma_a) \) for some \(a \in A \) and:

(i) if \(k > 0 \), then \(t < T^h(\gamma_a) \) for all \(0 < h < k \),

(ii) if \(k \leq 0 \), then \(t < T^h(\gamma_a) \) for all \(k < h \leq 0 \),

![Diagram of interval exchange transformation](image-url)
Induced transformations

Let T be a minimal interval exchange transformation and $I \subset [l, r]$. The transformation induced by T on I is the transformation $S : I \rightarrow I$ defined by

$$S(z) = T^n(z) \quad \text{with} \quad n = \min\{k > 0 \mid T^k(z) \in I\}$$

The semi-interval I is called the domain of S, denoted $D(S)$.
Induced transformations

Let T be a minimal interval exchange transformation and $I \subset [l, r]$. The \textit{transformation induced} by T on I is the transformation $S : I \rightarrow I$ defined by

$$S(z) = T^n(z) \quad \text{with} \quad n = \min\{k > 0 \mid T^k(z) \in I\}$$

The semi-interval I is called the \textit{domain} of S, denoted $D(S)$.

\textbf{Theorem [Rauzy, 1979]}

Let T be a regular interval exchange transformation and I a right-admissable interval for T. The induced transformation is a regular interval exchange transformation.
Induced transformations

\[T = [0, 2\alpha] \]

\[S(z) = \begin{cases}
T^2(z) & \text{if } 0 \leq z < 1 - 2\alpha \\
T(z) & \text{otherwise}
\end{cases} \]
Right Rauzy induction

Let T be a regular interval exchange transformation on $[\ell, r]$. Set

$$Z(T) = [\ell, \max_a \{\gamma_a, T(\gamma_a)\}].$$

We denote by $\psi(T)$ the transformation induced by T on $Z(T)$.
Right Rauzy induction

Let T be a regular interval exchange transformation on $[\ell, r]$. Set

$$Z(T) = [\ell, \max_a \{\gamma_a, T(\gamma_a)\}]$$

We denote by $\psi(T)$ the transformation induced by T on $Z(T)$.

Theorem [Rauzy, 1979]

Let T be a regular interval exchange transformation. A semi-interval I is right-admissible for $T \iff I = Z(\psi^n(T))$ for some $n > 0$. In this case, the transformation induced by T on I is $\psi^{n+1}(T)$.

The map $T \to \psi(T)$ is called the *right Rauzy induction*.
Right Rauzy induction

\[
\begin{align*}
T(\gamma_a) & : 0 \rightarrow 1 - 2\alpha \rightarrow 1 - \alpha \rightarrow 1 \\
\psi(T) & : 0 \rightarrow 1 - 2\alpha \rightarrow 1 - \alpha \rightarrow 2\alpha \\
\psi^2(T) & : 0 \rightarrow 2 - 5\alpha \rightarrow 1 - 2\alpha \rightarrow 1 - \alpha
\end{align*}
\]
The symmetrical notions of *left admissible semi-interval* and *left Rauzy induction*, denoted φ, are defined similarly.

![Diagram of Rauzy Induction](image)
Two-sided Rauzy induction

Let T be a regular interval exchange transformation. For $\ell \leq u < v \leq r$ we say that the semi-interval $I = [u, v[$ is admissible for T if $u, v \in \text{Div}(I, T) \cup r$ with

$$\text{Div}(I, T) = \bigcup_a \left\{ T^k(\gamma_a) \mid -\rho^-(\gamma_a) \leq k < \rho^+(\gamma_a) \right\}$$

$$\rho^-(z) = \min \left\{ n > 0 \mid T^n(z) \in]u, v[\right\}, \quad \rho^+(z) = \min \left\{ n \geq 0 \mid T^{-n}(z) \in]u, v[\right\}.$$
Two-sided Rauzy induction

Let T be a regular interval exchange transformation. For $\ell \leq u < v \leq r$ we say that the semi-interval $I = [u, v]$ is admissible for T if $u, v \in \text{Div}(I, T) \cup r$ with

$$\text{Div}(I, T) = \bigcup_{a} \left\{ T^k(\gamma_a) \mid -\rho^{-}(\gamma_a) \leq k < \rho^{+}(\gamma_a) \right\}$$

$$\rho^{-}(z) = \min \left\{ n > 0 \mid T^n(z) \in]u, v[\right\}, \quad \rho^{+}(z) = \min \left\{ n \geq 0 \mid T^{-n}(z) \in]u, v[\right\}.$$

Theorem [BDDPRR (i.e. us), 2013]

The transformation induced by T on I is a regular interval exchange transformation.

Theorem [BDDPRR (i.e. us), 2013]

I is admissible for T if I is the domain of a $\chi \in \{\varphi, \psi\}^*$. In this case, the transformation induced by T on I is $\chi(T)$.
Two-sided Rauzy induction

\[T(\gamma_c) \quad c \quad T(\gamma_a) \]

\[\varphi \circ \psi(T) \]

\[\varphi^2 \circ \psi(T) \]

Francesco Dolce (Université Paris Est) Two-sided Rauzy Induction Leiden, 23th January 2014
Outline

1. Interval exchange transformations
 - Interval exchange transformations
 - Regular interval exchange transformations

2. Rauzy induction
 - Right Rauzy induction
 - Two-sided Rauzy induction

3. Natural coding
 - Natural coding
 - Regular interval exchange sets
 - Return theorem
Natural Coding

Let T be an interval exchange transformation relative to $(l_a)_{a \in A}$. The *natural coding* of T relative to $z \in [\ell, r]$ is the infinite word $\Sigma_T(z) = a_0a_1 \cdots \in A^\omega$ defined by

$$a_n = a \quad \text{si} \quad T^n(z) \in l_a.$$
Natural Coding

Let T be an interval exchange transformation relative to $(I_a)_{a \in A}$. The *natural coding* of T relative to $z \in [\ell, r]$ is the infinite word $\Sigma_T(z) = a_0a_1 \cdots \in A^\omega$ defined by

$$a_n = a \text{ si } T^n(z) \in I_a.$$

Example

The *Fibonacci word* is the natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α, i.e. $T(z) = z + \alpha \mod 1$.

![Diagram of the Fibonacci word and interval exchange transformation](image_url)
Natural Coding

Let T be an interval exchange transformation relative to $(I_a)_{a \in A}$. The natural coding of T relative to $z \in [\ell, r]$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^\omega$ defined by

$$a_n = a \quad \text{si} \quad T^n(z) \in I_a.$$

Example

The Fibonacci word is the natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α, i.e. $T(z) = z + \alpha \mod 1$.

$\Sigma_T(z) = a$
Natural Coding

Let T be an interval exchange transformation relative to $(l_a)_{a \in A}$. The *natural coding* of T relative to $z \in [\ell, r]$ is the infinite word $\Sigma_T(z) = a_0a_1 \cdots \in A^\omega$ defined by

$$a_n = a \text{ si } T^n(z) \in l_a.$$

Example

The *Fibonacci word* is the natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α, i.e. $T(z) = z + \alpha \mod 1$.

$$\Sigma_T(z) = ab$$
Natural Coding

Let T be an interval exchange transformation relative to $(l_a)_{a \in A}$. The *natural coding* of T relative to $z \in [\ell, r]$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^\omega$ defined by

$$a_n = a \quad \text{si} \quad T^n(z) \in l_a.$$

Example

The *Fibonacci word* is the natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α, i.e. $T(z) = z + \alpha \mod 1$.

$$\Sigma_T(z) = a b a$$
Natural Coding

Let T be an interval exchange transformation relative to $(l_a)_{a \in A}$. The *natural coding* of T relative to $z \in [\ell, r]$ is the infinite word $\Sigma_T(z) = a_0a_1 \cdots \in A^\omega$ defined by

$$a_n = a \quad \text{if} \quad T^n(z) \in l_a.$$

Example

The *Fibonacci word* is the natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α, i.e. $T(z) = z + \alpha \mod 1$.

$$\Sigma_T(z) = a b a a$$
Natural Coding

Let T be an interval exchange transformation relative to $(l_a)_{a \in A}$. The natural coding of T relative to $z \in [\ell, r]$ is the infinite word $\Sigma_T(z) = a_0a_1\cdots \in A^\omega$ defined by

$$a_n = a \; \text{ si } \; T^n(z) \in l_a.$$

Example

The Fibonacci word is the natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α, i.e. $T(z) = z + \alpha \mod 1$.

\[
\Sigma_T(z) = a \; b \; a \; a \; b
\]
Natural Coding

Let T be an interval exchange transformation relative to $(I_a)_{a \in A}$. The *natural coding* of T relative to $z \in [\ell, r]$ is the infinite word $\Sigma_T(z) = a_0a_1\cdots \in A^\omega$ defined by

$$a_n = a \quad \text{si} \quad T^n(z) \in I_a.$$

Example

The *Fibonacci word* is the natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α, i.e. $T(z) = z + \alpha \mod 1$.

$$\Sigma_T(z) = a\ b\ a\ a\ b\ a\ \cdots$$

Francesco Dolce (Université Paris Est) Two-sided Rauzy Induction Leiden, 23th January 2014 17 / 23
Proposition

If T is minimal, $\mathcal{L}(\Sigma_T(z))$ does not depend on z.

When T is regular (minimal), $\mathcal{L}(T) = \mathcal{L}(\Sigma_T(z))$ is said a *regular (minimal) interval exchange set* (*linear complexity, neutrality, tree set* \(^1\), *finite index basis, etc.*).

1. See Valérie Berthé’s talk next week.

Francesco Dolce (Université Paris Est)
Two-sided Rauzy Induction
Leiden, 23th January 2014
Regular interval exchange sets

Proposition
If T is minimal, $\mathcal{L}(\Sigma_T(z))$ does not depend on z.

When T is regular (minimal), $\mathcal{L}(T) = \mathcal{L}(\Sigma_T(z))$ is said a regular (minimal) interval exchange set (linear complexity, neutrality, tree set1, finite index basis, etc.).

Proposition
If T is minimal, $w \in \mathcal{L}(T) \iff J_w \neq 0$.

Proposition
If T is regular, J_w is admissible for every $w \in \mathcal{L}(T)$.

1. See Valérie Berthé’s talk next week.
Return Theorem

The set of right return words to a word \(w \) (w.r.t. \(\mathcal{L}(T) \)) is

\[
\Gamma_{\mathcal{L}(T)} = \{ u \in \mathcal{L}(T) \mid wu \in A^+ \cap \mathcal{L}(T) \}
\]

while the set of first right return words is

\[
\mathcal{R}_{\mathcal{L}(T)} = \Gamma_{\mathcal{L}(T)} \setminus \Gamma_{\mathcal{L}(T)} A^+
\]

Theorem [BDDPRR (i.e. us), 2013]

Let \(T \) be a regular interval exchange transformation on \(A \). For any \(w \in \mathcal{L}(T) \), the set of first right return words to \(w \) is a basis of the free group on \(A \).
The set of first right return words to a is

$$\mathcal{R}_{\mathcal{L}(T)}(a) = \{a, ba\}$$

And we can find it via the automorphism

$$\theta : \begin{cases}
 a & \mapsto a \\
 b & \mapsto ba
\end{cases}$$
Return Theorem

The set of first right return words to b is

$$R_{L}(T)(b) = \{aab, ab\}$$

And we can find it via the automorphism

$$\theta: \begin{cases}
a &\mapsto ab &\mapsto aab
b &\mapsto b &\mapsto ab
\end{cases}$$

Francesco Dolce (Université Paris Est) Two-sided Rauzy Induction Leiden, 23th January 2014
Conclusions

- Two-sided version of:
 - admissible semi-intervals,
 - Rauzy induction,
 - two Rauzy’s theorems;
- Regular interval exchange set;
- Return theorem.
Questions?