The Lorentz Center organizes international workshops for researchers in all scientific disciplines. Its aim is to create an atmosphere that fosters collaborative work, discussions, and interactions.

For registration see: www.lorentzcenter.nl

This workshop is part of the CECAM-Lorentz collaboration to stimulate innovative computational simulation and modeling.

Atomistic Modelling of Solid-Liquid Interfaces in Electrocatalysis

8 - 12 January 2024, Leiden, the Netherlands

Scientific Organizers

- Giancarlo Cicero, Politecnico di Torino
- Max García-Melchor, Trinity College Dublin
- Hannes Jónsson, University of Iceland
- Marc Koper, Leiden University
- Nuria López, Institut Català d’Investigació Química

Topics

- Improvement of Implicit Solvation Models
- The Inclusion of the Explicit Liquid Phase in the Simulations
- Study of the Effect of the Electrolyte Solution on the Catalysis
- The Inclusion of an External Applied Potential in the Simulations
- Use of Machine Learning Algorithms

"The intricate nature of solid/liquid interfaces, sketching various features and phenomena." Image by Dr. Michelle Re Finovert (Politecnico di Torino). Poster design: SuperNova Studios NL.
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00-10.10</td>
<td>Lorentz Center Presentation</td>
</tr>
<tr>
<td>10.10-10.30</td>
<td>Organizers Workshop Introduction</td>
</tr>
<tr>
<td>10.30-11.00</td>
<td>A. Gross (Ulm University): Formation and structure of electric double layers from an atomistic point of view</td>
</tr>
<tr>
<td>11.00-11.30</td>
<td>M. Caspary-Toroker (Technion): Computational methods for modeling materials for H2O splitting</td>
</tr>
<tr>
<td>11:30-12:00</td>
<td>G. Kastlunger (Technical University of Denmark): The role of the electrochemical driving forces in electrocatalytic reaction energetics</td>
</tr>
<tr>
<td>12.00-14.00</td>
<td>Lunch Break</td>
</tr>
<tr>
<td>14.00-14.30</td>
<td>A. Muñoz-García (University of Naples Federico II): Exploring the boundaries of first-principles methods in heterogenous functional interfaces</td>
</tr>
<tr>
<td>14.30-15.00</td>
<td>F. Calle-Vallejo (University of the Basque Country): Gas-phase errors in computational electrocatalysis models</td>
</tr>
<tr>
<td>15.00-15.30</td>
<td>Participants speed presentations</td>
</tr>
<tr>
<td>15.30-16.00</td>
<td>Participants speed presentations</td>
</tr>
<tr>
<td>16.00-16.30</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>16.30-17.00</td>
<td>G. Cicero (Politecnico di Torino): Survey Analysis</td>
</tr>
<tr>
<td>18:00</td>
<td>Welcome Reception / poster session</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>09.00-09.30</td>
<td>K. Schwarz (National Institute of Standards and Technology): Ingredients for implicit solvation recipes: moving beyond SaLSA</td>
</tr>
<tr>
<td>09.30-10.00</td>
<td>S. Ringe (Korea University): Importance of a charge-transfer descriptor for the computational screening of electrocatalysts</td>
</tr>
<tr>
<td>10.00-10.30</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>10.30-11.00</td>
<td>T. Rahman (University of Central Florida): Enhancements in the implicit solvent model for simulations of the electrochemical environment for CO2RR</td>
</tr>
<tr>
<td>11.00-11.30</td>
<td>M. Melander (University of Jyväskylä): Combining electronic DFT with statistical liquid state theories to model electrochemical interfaces</td>
</tr>
<tr>
<td>11.30-12.00</td>
<td>J. Cheng (Xiamen University): Towards AI2 Electrochemistry</td>
</tr>
<tr>
<td>12.00-14.00</td>
<td>Lunch Break/Poster session</td>
</tr>
<tr>
<td>14.00-14.15</td>
<td>S. Vijay (VASP Software GmbH): Linking models of the electrochemical interface with the Vienna ab-initio simulation package</td>
</tr>
<tr>
<td>14.15-14.30</td>
<td>D. Le (University of Central Florida): Improving the Computational Efficiency of Explicit-Implicit Hybrid Solvent Model for Simulations of the Electrochemical</td>
</tr>
<tr>
<td>14.30-16.00</td>
<td>Group discussion</td>
</tr>
<tr>
<td>16.00-16.30</td>
<td>Coffee Break / Poster session</td>
</tr>
<tr>
<td>16.30-17.15</td>
<td>Plenary summary</td>
</tr>
<tr>
<td>17.15-18.00</td>
<td>G. Cicero (Politecnico di Torino): MSCA Panel</td>
</tr>
<tr>
<td>Time</td>
<td>Speaker/Institution</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>09.00-09.30</td>
<td>I. McCrum (Clarkson University)</td>
</tr>
<tr>
<td>09.30-10.00</td>
<td>K. Doblhoff-Dier (Leiden University)</td>
</tr>
<tr>
<td>10.00-10.30</td>
<td></td>
</tr>
<tr>
<td>10.30-11.00</td>
<td>M. Sulpizi (Ruhr Universität Bochum)</td>
</tr>
<tr>
<td>11.00-11.30</td>
<td>L. Giordano (University of Milano-Bicocca)</td>
</tr>
<tr>
<td>11.30-12.00</td>
<td>F. Duarte (University of Oxford)</td>
</tr>
<tr>
<td>12.00-14.00</td>
<td></td>
</tr>
<tr>
<td>14.00-14:15</td>
<td>G. Melani (CNR)</td>
</tr>
<tr>
<td>14.15-14:30</td>
<td>S-J. Shin (Imperial College London)</td>
</tr>
<tr>
<td>14.30-16.00</td>
<td></td>
</tr>
<tr>
<td>16.00-16.30</td>
<td></td>
</tr>
<tr>
<td>16.30-17.15</td>
<td></td>
</tr>
<tr>
<td>17:15-19:00</td>
<td></td>
</tr>
<tr>
<td>19:00-20:30</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>09.00-09.30</td>
<td>K. Honkala (University of Jyväskylä): Grand-canonical ensemble DFT calculations for understanding electrocatalytic reactions at atomic scale</td>
</tr>
<tr>
<td>09.30-10.00</td>
<td>N. G. Hörmann (Fritz-Haber-Institut): Divergent Paths, Convergent Insights: Constant Charge vs. Constant Potential Methods</td>
</tr>
<tr>
<td>10.00-10.30</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>10.30-11.00</td>
<td>J. Mark Martínez (Princeton University): Can embedded multiconfigurational wavefunction methods reveal fresh insights into the electrochemical CO2</td>
</tr>
<tr>
<td>11.00-11.30</td>
<td>C. Cucinotta (Imperial College London): Exploring the Pt(111)-Electrolyte Interface Under Applied Potentials: A First Principles Approach</td>
</tr>
<tr>
<td>11.30-12.00</td>
<td>J. Rossmeisl (University of Copenhagen): Electrocatalysis on high entropy alloys</td>
</tr>
<tr>
<td>12.00-14.00</td>
<td>Lunch Break/Poster session</td>
</tr>
<tr>
<td>14.00-14:15</td>
<td>L. Li (Fritz-Haber-Institut): The Response of Interfacial Water at an Electrified Pt(111) Surface</td>
</tr>
<tr>
<td>14.15-14:30</td>
<td>J-X. Zhu (Xiamen University): Machine Learning-Accelerated Simulation of Electrochemical Interfaces</td>
</tr>
<tr>
<td>14.30:16.00</td>
<td>Group discussion</td>
</tr>
<tr>
<td>16.00-16.30</td>
<td>Coffee Break / Poster session</td>
</tr>
<tr>
<td>16.30-17.15</td>
<td>Plenary summary</td>
</tr>
<tr>
<td>17:15-18:00</td>
<td>N. López (ICIQ): HPC opportunities</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>09.00-09.30</td>
<td>M. Caro (Aalto University): Atomistic machine learning for a unified description of bulk, surfaces, liquids and molecules with force field computational cost and</td>
</tr>
<tr>
<td>09.30-10.00</td>
<td>M. García-Melchor (Trinity College Dublin): Databases and accelerated catalyst design</td>
</tr>
<tr>
<td>10.00-10.30</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>10.30-11.00</td>
<td>ML Open discussion</td>
</tr>
<tr>
<td>11.00-11.30</td>
<td>N. López (ICIQ): Data sharing</td>
</tr>
<tr>
<td>11.30-12.00</td>
<td>Commentary paper</td>
</tr>
<tr>
<td>12.00-14.00</td>
<td>Lunch Break</td>
</tr>
<tr>
<td>14.00-16.00</td>
<td>Workshop summary & follow up</td>
</tr>
</tbody>
</table>