STREAMER THEORY OF SPRITES

Victor Pasko and Ningyu Liu
STREAMER THEORY OF SPRITES

Victor Pasko and Ningyu Liu
Communications and Space Sciences Laboratory
The Pennsylvania State University
211B EE East, University Park, PA 16802, U.S.A.
E-mail: vpasko@psu.edu, nul105@psu.edu

Streamers, Sprites, Leaders, Lightning: from Micro- to Macroscales Workshop
Lorentz Center, Leiden University
Leiden, The Netherlands

October 8-12, 2007
• General Phenomenology of Streamers and Sprites
• Summary of Emissions Associated with Sprites
• Physical Mechanism of Sprites
• Motivation for Studies of Sprite Streamers in Weak Fields
• Modeling of Sprite Streamers and Comparison with Recent Observations
• Modeling Studies of NO-\(\gamma\) Emissions from Sprite Discharges
Electron Avalanche

Fig. 12.1. Shape and charge distribution of an electron avalanche at two consecutive moments of time. Arrows indicate directions of external field E_0 and velocity of motion of the avalanche head, v_d.

Fig. 12.3. Electric fields in a gap containing an electron avalanche. (a) Lines of force of the external field E_0 and of the field of space charge of the avalanche, E', are shown separately. (b) Lines of force of the resulting field $E = E_0 + E'$. Circles mark the centers of space charges.

Concept of a Negative (Anode-directed) Streamer

- Streamers - filamentary plasmas driven by highly nonlinear space charge waves.

Fig. 12.6. Anode-directed streamer. (a) Photons and secondary avalanches in front of the streamer head at two consecutive moments of time. (b) Field in the vicinity of the head

Concept of a Positive (Cathode-directed) Streamer

Fig. 12.5. Cathode-directed streamer. (a) Streamer at two consecutive moments of time, with secondary avalanches moving towards the positive head of the streamer; wavy arrows are photons that generate seed electrons for avalanches. (b) Lines of force of the field near the streamer head

A summary of useful similarity relationships (\(N\) is air density, \(N_o=2.68 \times 10^{25} \text{ m}^{-3}\) is a reference value corresponding to ground pressure):

- **Length** (i.e., mean free path, streamer radius, etc):
 \[
 L = L_o \frac{N_o}{N}
 \]

- **Time** (i.e., between collisions, dielectric relaxation, 2-body attachment, etc):
 \[
 \tau = \tau_o \frac{N_o}{N}
 \]

- **Electric field** (in streamer head, in streamer body, etc):
 \[
 E = E_o \frac{N}{N_o}
 \]

- **Plasma and charge density** (i.e., electron and ion in streamer body, etc.):
 \[
 n = n_o \frac{N^2}{N_o^2}
 \]
• Streamers in a 80 mm gap imaged with optical gate \sim80 ns [Briels et al., 2006]
Recent Submillisecond Imaging of Sprite Development and Structure

Outline

• General Phenomenology of Streamers and Sprites
• Summary of Emissions Associated with Sprites
• Physical Mechanism of Sprites
• Motivation for Studies of Sprite Streamers in Weak Fields
• Modeling of Sprite Streamers and Comparison with Recent Observations
• Modeling Studies of NO-γ Emissions from Sprite Discharges
Overview of Emissions from Sprites

- The time averaged optical emissions in sprites are dominated by red emissions associated with the first positive band system of N$_2$ [Mende et al., 1995; Hampton et al., 1996; Morrill et al., 1998; Takahashi et al., 2000; Bucsela et al., 2003].

- The narrow band photometric and blue-light video observations of sprites [Armstrong et al., 1998, 2000; Suszcynsky et al., 1998; Morrill et al., 2002] indicate presence of short duration (∼ms) bursts of blue optical emissions associated with the second positive band system of N$_2$ and the first negative band system of N$_2^+$ appearing at the initial stage of sprite formation.

- Possible features from the Meinel band system of N$_2^+$ have been discussed by Morrill et al. [1998] and Bucsela et al. [2003].
A Sprite Event Observed by the ISUAL on FORMOSAT-2

[2004-07-18/21:30:15.287]

[2004-07-18/21:30:15.297]

[2004-07-18/21:30:15.327]

[2004-07-18/21:30:15.337]

[2004-07-18/21:30:15.347]

[2004-07-18/21:30:15.357]

[2004-07-18/21:30:15.367]

[2004-07-18/21:30:15.377]

[2004-07-18/21:30:15.387]

[2004-07-18/21:30:15.397]

[2004-07-18/21:30:15.407]

[2004-07-18/21:30:15.417]

[Trigger 2004-07-18/21:30:15.316]

[Sprite]

[Lightning]

[Mende et al., 2006]
Summary of Emissions from Sprites

<table>
<thead>
<tr>
<th>Emission Band System</th>
<th>Transition</th>
<th>Excitation Energy Threshold (eV)</th>
<th>Lifetime at 70 km Alt. (µs)</th>
<th>Quenching Alt. (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1PN$_2$</td>
<td>N$_2$(B$^3\Pi_g$)\rightarrowN$_2$(A$^3\Sigma^+_u$)</td>
<td>\sim7.35</td>
<td>5.4</td>
<td>\sim53</td>
</tr>
<tr>
<td>2PN$_2$</td>
<td>N$_2$(C$^3\Pi_u$)\rightarrowN$_2$(B$^3\Pi_g$)</td>
<td>\sim11</td>
<td>50</td>
<td>\sim30</td>
</tr>
<tr>
<td>LBH N$_2$</td>
<td>N$_2$(a$^1\Pi_g$)\rightarrowN$_2$(X$^1\Sigma^+_g$)</td>
<td>\sim8.55</td>
<td>14</td>
<td>\sim77</td>
</tr>
<tr>
<td>1NN$_2^+$</td>
<td>N$_2^+$(B$^2\Sigma^+_u$)\rightarrowN$_2^+$(X$^2\Sigma^+_g$)</td>
<td>\sim18.8</td>
<td>69</td>
<td>\sim48</td>
</tr>
</tbody>
</table>

- The N$_2$(B$^3\Pi_g$) vibrational distribution obtained in [Bucselka et al., 2003] appeared to be consistent with those observed in laboratory afterglows, indicating an energy transfer process of the form:

$$N_2(A^3\Sigma^+_u, w) + N_2(X^1\Sigma^+_g, v \geq 5) \rightarrow N_2(B^3\Pi_g, w') + N_2(X^1\Sigma^+_g, v' \sim 0)$$ \hspace{1cm} (1)

- The spectroscopic features of sprites are consistent with emissions from pulsed corona discharges in laboratory experiments [Gallimberti et al., 1974; Teich, 1993; Simek et al., 1998, 2002; Kim et al., 2003].

- There is a need of further studies of processes related to vibrational excitation of ground state of N$_2$ molecules, and pooling and resonant energy transfer reactions involving N$_2$(A$^3\Sigma^+_u$) metastable species for understanding of emissions originating from B$^3\Pi_g$ and C$^3\Pi_u$ states of N$_2$, and NO γ-band emissions [e.g., Simek et al., 1998, and references therein], during both, initial and post-discharge stages of sprite discharge.
• General Phenomenology of Streamers and Sprites
• Summary of Emissions Associated with Sprites
• Physical Mechanism of Sprites
• Motivation for Studies of Sprite Streamers in Weak Fields
• Modeling of Sprite Streamers and Comparison with Recent Observations
• Modeling Studies of NO-γ Emissions from Sprite Discharges
"While the electric force due to the thundercloud falls off rapidly as \(r \) increase, the electric force required to cause sparking (which for a given composition of the air is proportional to its density) falls off still more rapidly. Thus, if the electric moment of a cloud is not too small, there will be a height above which the electric force due to the cloud exceeds the sparking limit."

The altitude distribution of different time scales characterizing the electrical breakdown associated with sprites [Pasko et al., GRL, 25, 2123, 1998]:

- DIFFUSE REGION
- TRANSITION REGION
- STREAMER REGION

Dielectric relaxation

Dissociative attachment

Streamer formation
Diffuse and Streamer Regions of Sprites

- The images illustrating the altitude transition between diffuse and streamer regions in sprites [Stenbaek-Nielsen et al., GRL, 27, 3827, 2000]:

![Altitude vs. Sprites Diagram]

Altitude (km)

40 50 60 70 80 90

40 50 60 70 80 90
• General Phenomenology of Streamers and Sprites
• Summary of Emissions Associated with Sprites
• Physical Mechanism of Sprites
• Motivation for Studies of Sprite Streamers in Weak Fields
• Modeling of Sprite Streamers and Comparison with Recent Observations
• Modeling Studies of NO-\(\gamma \) Emissions from Sprite Discharges
Minimum Fields for Propagation of Positive Streamers

- The minimum field required for the propagation of positive streamers at ground pressure [Allen and Ghaffar, 1995]:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Propagation field (kV m(^{-1}))</th>
<th>Electrode gap details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phelps and Griffiths [3]</td>
<td>487</td>
<td>Plane-parallel, 90 mm</td>
</tr>
<tr>
<td>With dc source</td>
<td>510–542</td>
<td>Plane-parallel, 660, 470 and 210 mm</td>
</tr>
<tr>
<td>Present work</td>
<td>440</td>
<td>Plane-parallel, 180 mm</td>
</tr>
<tr>
<td>Acker and Penney [5]</td>
<td>460</td>
<td>Non-uniform, 31.7 mm</td>
</tr>
<tr>
<td>Bye et al [6]</td>
<td>470</td>
<td>Non-uniform, 450 mm</td>
</tr>
<tr>
<td>Allen and Dring [7]</td>
<td>414</td>
<td>Non-uniform, 600 mm</td>
</tr>
<tr>
<td>Geldenhuyss [8]</td>
<td>464,489</td>
<td>Non-uniform, 500 mm</td>
</tr>
</tbody>
</table>
Minimum Fields for Propagation of Negative Streamers

- The information about the absolute value of the similar field for the negative streamers at present is very limited. The existing sources indicate that this field is a factor of 2-3 higher than the corresponding field for the positive streamers [e.g., Raizer, 1991, p. 361; Babaeva and Naidis, 1997].
Double-headed Streamer at Ground Pressure

- Development of a double-headed streamer in uniform field $E_0 > E_k$ ($E_0=48$ kV/cm) at ground pressure [Bourdon et al., Plasma Sources Sci. Tech., 16, 656, 2007, http://www.iop.org/EJ/abstract/0963-0252/16/3/026]:

![Diagram showing electron density, electric field, and Sph at t = 3.5 ns](image-url)
Motivation for Studies of Sprite Streamers in Weak Fields

- The initiation mechanisms of sprites produced by lightning discharges associated with charge moment changes as small as 120 C km [Hu et al., GRL, 29, 1279, doi:10.1029/2001GL014593, 2002] are not understood at present.
Sprite Streamers Form on Time Scales $\ll 1$ ms

- The formation times of sprite streamers are $\ll 1$ ms and their lifetimes are on the order of ~ 1 ms [Marshall and Inan, Radio Science, 41, RS6S43, 2006]:

![Streamer diameter](image1)

![Streamer lifetime](image2)
Electric Field Driving Sprites Increases on Time Scales ~ 1 ms

- The event-level analysis reported by *Hu et al.* [J. Geophys. Res., 112, D13115, 2007] provides quantitative information on time variation of lightning current moment, charge moment and electric field driving sprite phenomena:

![Graph of electric field and current moment](image-url)
Positive Streamers in Sprites Are Initiated Before Negative Ones

- Recently reported observations of sprites at 10,000 frames per second:

[McHarg et al., GRL, 34, L06804, 2007; Stenbaek-Nielsen et al., GRL, 34, L11105, 2007]
Fractal Modeling of Sprites

- The observed initiation of positive streamers in sprites before the negative ones may be related to relatively slow variation of the driving electric field ($\sim 1 \text{ ms}$) [Hu et al., 2007] and the lower electric field threshold required for propagation of positive streamers [Pasko et al., Geophys. Res. Lett., 4, 497, 2000]:

![Diagram showing the initiation of positive streamers in sprites before the negative ones.](image)
• General Phenomenology of Streamers and Sprites
• Summary of Emissions Associated with Sprites
• Physical Mechanism of Sprites
• Motivation for Studies of Sprite Streamers in Weak Fields
• Modeling of Sprite Streamers and Comparison with Recent Observations
• Modeling Studies of NO-γ Emissions from Sprite Discharges
Simulation Setup to Initiate Streamers in Weak Fields

[Babaeva and Naidis, 1997]
Model Streamer in a Weak Electric Field at 70 km Altitude

- Modeling results on a streamer advancing in a weak electric field at 70 km altitude: (a) electron number density, (b) electric field, and (c) intensity (in Rayleighs) profiles of 1PN$_2$, 2PN$_2$, 1NN$_2^+$ and LBH N$_2$ emissions along the central axis of the modeled streamer [Liu et al., 2006].

![Graphs of electron density, electric field, and intensity profiles](image-url)
Comparison of ISUAL Observations with Streamer Modeling

• Comparison of results from sprite streamer modeling with spectrophotometric measurements by ISUAL instrument on FORMOSAT-2 satellite [Liu et al., Geophys. Res. Lett., 33, L01101, 2006].
Recent Advances in Remote Sensing of Electric Fields in Sprites

- *Morrill et al.* [Geophys. Res. Lett., 29, 1462, 2002] reported analysis of time integrated (33 ms) sprite emissions indicating that electric field in sprites closely followed E_k up to 55 km altitude and dropped below E_k above 55 km, where E_k is the conventional breakdown threshold field.

- *Kuo et al.* [Geophys. Res. Lett., 32, L19103, 2005] used five selected sprite events recorded by ISUAL instrument to estimate the strength of the electric field in sprites to be $2.1-3.7E_k$.

- *Liu et al.* [Geophys. Res. Lett., 33, L01101, 2006] compared streamer modeling with ISUAL observations and concluded that in order to agree with observations during initial (~0.5 ms) stage of sprite development the maximum field driving emissions of an observed sprite event must be greater than $3E_k$.

- *Adachi et al.* [Geophys. Res. Lett., 33, L17803, 2006] analyzed twenty sprite events captured by ISUAL instrument and estimated that electric fields in upper/diffuse region of sprites do not exceed 0.5-0.7E_k and in lower/streamer region are 1-2E_k, which are lower than those estimated by streamer theory presented in *[Liu et al., 2006]*.

Illustration of Time-Integrated Effects

- CCD photos of streamers in a 25 mm point-wire gap at ground pressure in air using an optical gate of (a) 0.8 ns and (b) 5 µs [van Veldhuizen and Rutgers, 2002].

- Modeling results of 1PN$_2$ streamer emissions at 70 km altitude at the moment of time 530 µs (c), and a series of moments of time between 0 µs and 530 µs (d) [Liu and Pasko, 2004].
A Positive Streamer in a Field of 25 N/N₀ kV/cm at 75 km Altitude

Electron Density

- Electron Density (m⁻³)
- Electric Field (V/m)
- Intensity (R)

Altitude = 75 km, Time = 0.39 ms, E₀ = 25 kV/cm N/N₀
Effects of Spatial Resolution of Imaging

![Image showing the effects of spatial resolution with different pixel resolutions: 5 m/pixel, 15 m/pixel, and 40 m/pixel. The images depict the spatial distribution at t = 0.39 ms with color-coded intensity values ranging from 5x10^6 to 3.9x10^7.]
Recent Observations ofSprites at 10,000 Frames per Second

[McHarg et al., GRL, 34, L06804, 2007; Stenbaek-Nielsen et al., GRL, 34, L11105, 2007]
• General Phenomenology of Streamers and Sprites
• Summary of Emissions Associated with Sprites
• Physical Mechanism of Sprites
• Motivation for Studies of Sprite Streamers in Weak Fields
• Modeling of Sprite Streamers and Comparison with Recent Observations

Observation of NO-γ Emissions in Laboratory Experiments

- Laboratory experiments at ground pressure suggest that NO-γ emissions can be generated during streamer discharges, which have a wavelength range overlapping with that of N₂ LBH emissions [e.g., Simek et al., J. Phys. D: Appl. Phys., 35, 1998; Tochikubo and Teich, Jpn. J. Appl. Phys., 39, 2000].

Figure 1: Time histories of 2PN₂, 1NN₂⁺ and NO-γ from repetitive positive streamer discharge (365 hPa N₂ + 10 hPa O₂) [Tochikubo and Teich, 2000].
NO Chemistry in Sprite Streamers

- Important species involved in NO chemistry: N$_2$, O$_2$, N(^2D), O(^3P), N$_2$(A$^3\Sigma_u^+$), NO($X^2\Pi_r$), and NO(A$^2\Sigma^+$)

<table>
<thead>
<tr>
<th>Reaction process or index</th>
<th>Reaction</th>
<th>Rate Coefficient [f(E/N) denotes function of reduced electric field]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron collision reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$e + N_2 \rightarrow e + N(^4S) + N(^2D)$</td>
<td>$f(E/N)$</td>
</tr>
<tr>
<td>2</td>
<td>$e + O_2 \rightarrow e + O(^3P) + O(^3P)$</td>
<td>$f(E/N)$</td>
</tr>
<tr>
<td>3</td>
<td>$e + N_2 \rightarrow e + N_2(A^3\Sigma_u^+)$</td>
<td>$f(E/N)$</td>
</tr>
<tr>
<td>4</td>
<td>$e + N_2 \rightarrow e + N_2(B^3\Pi_g)$</td>
<td>$f(E/N)$</td>
</tr>
<tr>
<td>5</td>
<td>$e + N_2 \rightarrow e + N_2(C^3\Pi_u)$</td>
<td>$f(E/N)$</td>
</tr>
<tr>
<td>6</td>
<td>$e + NO(X^2\Pi_r) \rightarrow e + NO(A^2\Sigma^+)$</td>
<td>$f(E/N)$</td>
</tr>
<tr>
<td>Chemical reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$N(^2D) + O_2 \rightarrow NO(X^2\Pi_r) + O(^3P)$</td>
<td>$5.20 \times 10^{-18} \text{m}^3\text{s}^{-1}$</td>
</tr>
<tr>
<td>8</td>
<td>$N_2(A^3\Sigma_u^+) + O(^3P) \rightarrow NO(X^2\Pi_r) + N(^2D)$</td>
<td>$7 \times 10^{-18} \text{m}^3\text{s}^{-1}$</td>
</tr>
<tr>
<td>9</td>
<td>$N(^2D) + NO \rightarrow N_2 + O(^3P)$</td>
<td>$6.0 \times 10^{-17} \text{m}^3\text{s}^{-1}$</td>
</tr>
<tr>
<td>Excitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$N_2(A^3\Sigma_u^+) + NO(X^2\Pi_r) \rightarrow NO(A^2\Sigma^+) + N_2(X^1\Sigma_g^+)$</td>
<td>$8.75 \times 10^{-17} \text{m}^3\text{s}^{-1}$</td>
</tr>
<tr>
<td>Quenching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>$N(^2D) + N_2 \rightarrow N(^4S) + N_2$</td>
<td>$1.70 \times 10^{-20} \text{m}^3\text{s}^{-1}$</td>
</tr>
<tr>
<td>12</td>
<td>$N_2(A^3\Sigma_u^+) + O_2 \rightarrow N_2 + O_2$</td>
<td>$8.75 \times 10^{-19} \text{m}^3\text{s}^{-1}$</td>
</tr>
<tr>
<td>13</td>
<td>$N_2(A^3\Sigma_u^+) + O_2 \rightarrow N_2 + 2O(^3P)$</td>
<td>$1.63 \times 10^{-18} \text{m}^3\text{s}^{-1}$</td>
</tr>
<tr>
<td>14</td>
<td>$NO(A^2\Sigma^+) + O_2 \rightarrow NO(X^2\Pi_r) + O_2$</td>
<td>$1.62 \times 10^{-16} \text{m}^3\text{s}^{-1}$</td>
</tr>
<tr>
<td>Radiative transition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>$N_2(B^3\Pi_g) \rightarrow N_2(A^3\Sigma_u^+) + h\nu$</td>
<td>$1.7 \times 10^5 \text{s}^{-1}$</td>
</tr>
<tr>
<td>16</td>
<td>$N_2(C^3\Pi_u) \rightarrow N_2(B^3\Pi_g) + h\nu$</td>
<td>$2.0 \times 10^7 \text{s}^{-1}$</td>
</tr>
<tr>
<td>17</td>
<td>$NO(A^2\Sigma^+) \rightarrow NO(X^2\Pi_r) + h\nu$</td>
<td>$5 \times 10^6 \text{s}^{-1}$</td>
</tr>
</tbody>
</table>
Source and Loss Processes of $\text{N}_2(A^3\Sigma^+_u)$ and $\text{N}_2(a^1\Pi_g)$

- The $\text{N}_2(A^3\Sigma^+_u)$ state is responsible for NO-γ emissions; The $\text{N}_2(a^1\Pi_g)$ state is responsible for N_2 LBH emissions.

(a) $\text{N}_2(A^3\Sigma^+_u)$ source and loss processes.

(b) $\text{N}_2(a^1\Pi_g)$ source and loss processes.
Streamer Model

- Modeling results for a sprite streamer developing in an ambient field $E_0 = 5 \times N_{70}/N_0 \text{kV/cm}$, where N_{70} and N_0 are air densities at 70 km and 0 km altitude, respectively.

![Diagram of electron density and electric field](image)
The initial density of NO is set to be $2 \times 10^{14} \ 1/m^3$ [Atreya, Adv. Space Res., 1, 127, 1981].
• N_2 LBH emissions dominate over NO-γ emissions in the streamer head. The intensity ratio of NO-γ to N_2 LBH emissions stays relatively constant in the streamer body.
Implications of This Work for Sprite Observations

- The NO-γ emissions from sprites are not observable for a wide bandwidth photometer.
- Strong bands of NO-gamma emissions are located in the wavelength range 240–260 nm in which N$_2$ LBH emissions are absent [Vallance-Jones, 1974, Tables 4.14 and 4.18, 1974].

- A dedicated narrow bandwidth photometer with the wavelength passband of 240–260 nm would be able to detect sprite NO-γ emissions from space.