Electrochemical Scanning Tunneling Microscopy

Olaf Magnussen
Institut für angewandte und experimentelle Physik, Universität Kiel

From pretty pictures ….

… to useful data.
Topics

Basics
- introduction into STM
- in-situ STM in electrochemical environment
- sample preparation

Applications
- electrode surface structure
- structure of adsorbate layers
- adsorbate dynamics
- growth processes
- surface phase transitions
Scanning Tunneling Microscopy – Experimental Issues

Mechanical stability

Problems and artifacts
- piezo nonlinearity
- creep
- noise
- drift
Scanning Tunneling Microscopy - Principle of Operation

\[I_t \propto U_t \cdot \exp(-\text{const.} \cdot \sqrt{\phi} \cdot \Delta z) \]
Scanning Tunneling Microscopy - Modes of Operation

Constant Current Mode
- Constant Current (0.1 - 10 nA)
- Feedback-controlled tip motion
- Measured signal: z-control
- Absolute height information
- Relatively slow scan speed

\[I_t \propto U_t \cdot \exp(-\text{const.} \cdot \sqrt{\phi} \cdot \Delta z) \]

Constant Height Mode
- Constant Height (z = 3 - 10 Å)
- No feedback-control
- Measured signal: \(I_t \)
- No absolute height information
- Relatively fast scan speed
- Not applicable for rough surfaces
Scanning Tunneling Microscopy – Image generation

Topview image

3D image
Topics

Basics
- introduction into STM
- in-situ STM in electrochemical environment
- sample preparation

Applications
- electrode surface structure
- structure of adsorbate layers
- adsorbate dynamics
- growth processes
- surface phase transitions
In-situ electrochemical STM

Diagram showing the setup for in-situ electrochemical scanning tunneling microscopy (STM). The diagram includes labels for CE, RE, tip, WE, $I_{f,\text{sample}}$, I_{SECM}, $I_{f,\text{tip}}$, U_t, U_{bias}, and U_s. The diagram illustrates the flow of currents and the setup of the electrodes.
In-situ electrochemical STM

tip potential controlled versus electrolyte ('Bipotentiostatic setup')

Electrochemical Cell

Potentiostat

\[U_{\text{sample}} \]
\[U_{\text{tunnel}} \]
\[U_{\text{tip}} \]

Counter electrode
Reference electrode
Tip
Sample

\[I_{\text{tunnel}} + I_{\text{ion}} \]

Feedback

\[V_{\text{tip}} \]
STM tips

Problems:
- Faradaic processes (currents, tip changes)
- Double layer capacity (noise)

Solved by:
- controlled tip potential
- tip coating
 - apiezon wax
 - polyethylene
 - electrophoretic paints
 - glas
 - nail polish

→ faradaic currents <10 pA
 tip capacitance < 10 pF
In-situ STM - Setup

coarse approach
single tube scanner
electrochemical cell

sample
Reference electrodes:

- wire (Pt, Pd/H, Cu)
- conventional RE + liquid bridge
Spatial resolution

High-resolution images of:
- close-packed metal lattices
- ordered adsorbate layers

→ similar as under UHV conditions

Au(100) Au(111) Au(110)

8 x 8 nm²
Tunneling barrier in electrolytes:
- On clean electrode surfaces $\phi \approx 1$ eV
- Oscillations in ϕ due to liquid structure

STS in electrochemical environment

- **I/V measurements**: limited bias range, limited tip stability
- **Local barrier height**: only qualitative information
- **Redox-reaction studies**: fast transfer rates

Au(111) in 0.1 M HCl after sequential deposition of 0.5 ML Pd and 0.25 ML Au

![STM images showing Au(111) substrate, Pd deposit, and Au deposit]
Tunneling Spectroscopy of Redox Centers

Resonant tunneling through redox states

Example: Graphite / Fe-Porphyrin / STM-tip

Problem: modification of structure / dynamic behavior due to presence of STM tip

- direct effects:
 - mechanical interactions (for $d_{\text{tunnel}} \ll$)
 - e_{tunnel} induced effects
 - exchange processes between tip and sample

- electrostatic effects
 (for $d_{\text{tunnel}} < d_{\text{DL, tip}} + d_{\text{DL, sample}}$)

- geometric effects (shielding, accumulation) for processes involving exchange with solution
Tests for tip effects

- variation of scanned surface area
- variation of tip-sample distance d_{tunnel} ($\rightarrow i_t, U_t$)
- variation of interaction time
- comparison with macroscopic measurements (\rightarrow electrochemical data)

Ni deposition on Au(111)

4 nA
100 nm

1.6 nA
210 nm

F. Möller, PhD thesis (1996)
Topics

Basics

• introduction into STM
• in-situ STM in electrochemical environment
• sample preparation

Applications

• electrode surface structure
• structure of adsorbate layers
• adsorbate dynamics
• growth processes
• surface phase transitions
Sample preparation

Sample requirements for high-resolution STM:
• Atomically smooth samples
• surface contamination < 0.1 ML for several hours → High purity of electrolyte and cell

Sample preparation methods:

• flame annealing
 Gold(hkl), Au films
 Pt(hkl)

• electropolishing / chemical polishing
 Cu(hkl)
 Ag(hkl)
 Si(111)-H

• electrochemical reduction
 Ni(hkl)

• in-situ deposition
 Pd$_x$Au$_{1-x}$
Au(hkl), Au films:
- Bunsen burner
- Cooling in air

Pt(hkl):
- H$_2$ flame
- Cooling in Ar

Au(111) herringbone reconstruction (sample immersed under potential control)
Electropolishing / chemical polishing

Cu(hkl):
- 66% H₃PO₄
- 1.8 V vs. Pt, 10s

Ag(hkl):
- Chromate etch

Ag(111)

10⁻³ M NiSO₄
10⁻² M H₃BO₃
10⁻¹ M HCl

-0.4 V Ag/AgCl
Electrochemical reduction

Oxidized Ni(111) Reduced Ni(111)

Annealed in H₂
Exposed to air at 300K

0.05 M H₂SO₄
-0.31 V SCE
In-situ deposition

Diffusion-controlled alloy deposition:

- $D_{Au} \approx D_{Pd} \rightarrow$ stoichiometry $\approx c_{Au}/c_{Pd}$
- Surface diffusion increased by Cl$^-$
 \rightarrow atomically smooth films

$\leq 12 \times 10^{-3}$ ML/min
$Pd_{0.1}Au_{0.9}$
Applications of EC STM

• structure and reactivity of alloy electrodes

• adsorbate layers

• adsorbate dynamics

• metal electrodeposition

• phase transitions at metal electrode surfaces
Topics

Basics
• introduction into STM
• in-situ STM in electrochemical environment
• sample preparation

Applications
• electrode surface structure
• structure of adsorbate layers
• adsorbate dynamics
• growth processes
• surface phase transitions
AuPd / Au(111): Composition and Atomic Structure

Pd$_x$Au$_{1-x}$ supported catalysts:

Catalysts for anode reaction in low-temperature fuel cells (PEM - FC)

Model system: electrodeposited Pd$_x$Au$_{1-x}$(111) films

In-situ STM Analysis:

<table>
<thead>
<tr>
<th>Chemical contrast:</th>
<th>Selective Pd dissolution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ $\approx 7%$ Pd</td>
<td>$\theta_{\text{holes}} \approx 0.07 \text{ ML}$</td>
</tr>
<tr>
<td></td>
<td>$\rightarrow \approx 7%$ Pd</td>
</tr>
</tbody>
</table>
AuPd / Au(111): distribution of Pd surface atoms

Statistical analysis of STM images:
→ surface density of Pd atom ensembles (monomers, dimers, trimers)
→ tendency towards 2D mixing

F. Maroun et al., Science 293, 1811 (2001)
AuPd / Au(111): H Adsorption

H adsorption peaks:
With increasing Pd content gradual increase of q_{H-Ad} ($\theta_H << \theta_{Pd}$)

Critical ensemble for H adsorption:
Pd dimers

F. Maroun et al., *Science* 293, 1811 (2001)
Oxidation of preadsorbed CO monolayers:

\[\theta_{\text{CO}} \approx \theta_{\text{Pd}} \]

Critical ensemble for CO adsorption:
Pd monomers

In situ FTIR Spectroscopy (SNIFTIRS):
- On-top adsorption of CO on Pd monomers
- Bridge/three-fold bound CO on larger Pd ensembles

F. Maroun et al., Science 293, 1811 (2001)
Topics

Basics
• introduction into STM
• in-situ STM in electrochemical environment
• sample preparation

Applications
• electrode surface structure
• structure of adsorbate layers
• adsorbate dynamics
• growth processes
• surface phase transitions
Sulfate / Au(111): adlayer phase transition

Surface reconstruction: (22x√3) ↔ (1x1)

Sulfate adlayer ordering disordered ↔ (√7x√3)

Au(111)
0.1 M H₂SO₄
10mV/s

E [V SCE]

j [μA cm⁻²]
Sulfate / Au(111): adlayer phase transition

1.0 M H$_2$SO$_4$

Sulfate / Au(111): adlayer structure

0.1 M H$_2$SO$_4$
0.85 V$_{SCE}$

Topics

Basics
• introduction into STM
• in-situ STM in electrochemical environment
• sample preparation

Applications
• electrode surface structure
• structure of adsorbate layers
• adsorbate dynamics
• growth processes
• surface phase transitions
Diffusion of atomic adsorbates: $S_{ad}/Cu(100)$

- 0.01 M HCl + 50 μM Na$_2$S
- $-0.36 \ V_{Cu/Cu^+}$
- 20 images/s
- real time

S_{ad} hopping between neighbouring $c(2\times2)$ lattice sites

[Diagram showing Cu, Cl_{ad}, and S_{ad}]
Diffusion of atomic adsorbates: $S_{ad}/Cu(100)$

0.01 M HCl + 50 µM Na$_2$S

-0.36 V_{Cu/Cu^+}

20 images/s

automatic image recognition

S_{ad} hopping between neighbouring $c(2x2)$ lattice sites
Diffusion of atomic adsorbates: $S_{ad}/Cu(100)$

Determination of jump distribution functions

0 ms

67 ms

4c(2x2) $\leq d_{NN}$

Model

Experiment

$f_{fit} = 4.1 \text{ s}^{-1}$

470 mV_{SCE}

$\Delta t = 100 \text{ ms}$

$\theta_{S-ad} = 0.008 \text{ ML}$

probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

displacement / a_0

0

1

$\sqrt{2}$

2

$\sqrt{5}$

$2\sqrt{2}$

3

0 1 2 1 2 2

$\sqrt{5}$

$\sqrt{5}$

$2\sqrt{2}$

$\sqrt{2}$
Diffusion of atomic adsorbates: $S_{ad}/Cu(100)$

Influence of STM-tip on S_{ad} diffusion → negligible for $i_t \leq 9$ nA

$S / Cu(100)$ in 0.01 M HCl

$-0.3 \, V_{Cu/Cu^+}$

![Graph showing hopping rate vs. tunnel-current]
Diffusion of atomic adsorbates: $S_{ad}/Cu(100)$

Results of quantitative measurements:
- Arrhenius behavior
- Potential-independent preexponential factors $v_0 = 2 \cdot 10^{12} \text{ s}^{-1}$
- Potential-dependent diffusion barrier E_a

Diffusion of atomic adsorbates: $S_{ad}/Cu(100)$

$$E_{\text{diff}} = 0.94 \text{ eV} + 0.50 \text{ eV} \cdot \phi / \phi_{\text{SCE}}$$

Graph:
- $E_d (\text{eV})$ vs. $\phi (V_{\text{SCE}})$
- $\nu_s (\text{s}^{-1})$ vs. $E_d (\text{eV})$

S / Cu(100) in 0.01 M HCl

296 K
Potential-dependence of S_{ad} diffusion

$E_{\text{diff}} = 0.94 \, eV + 0.50 \, eV \cdot \phi/V_{\text{SCE}}$

Electrostatic contribution to free energy of adsorption:

$$\Delta G_{ad} = \Delta G_{ad}^0 + \frac{p_{ad}}{\varepsilon_0} \cdot \sigma$$

→ potential-dependence:

$$\frac{d (\Delta G_{ad})}{d \phi} = \frac{p_{ad}}{\varepsilon_0} \cdot C_d$$

Difference in adsorbate charge state / dipole moment between adsorption site and activated state

→ electrostatic contribution to diffusion barrier:

$$E_{\text{diff}} = \left(\Delta G_{ad,\text{act}} - \Delta G_{ad,c(2 \times 2)} \right) = E_{\text{diff}}^0 + \frac{C_d}{\varepsilon_0} \cdot \left(p_{ad,\text{act}} - p_{ad,c(2 \times 2)} \right) \cdot \phi$$

Similar field-effects for all adsorbates / surface defects

Topics

Basics
• introduction into STM
• in-situ STM in electrochemical environment
• sample preparation

Applications
• electrode surface structure
• structure of adsorbate layers
• adsorbate dynamics
• growth processes
• surface phase transitions
Growth on the atomic scale

Issues in growth and dissolution processes

- Nucleation:
 - homogeneous/heterogeneous
 - sites

- Growth morphology:
 - 2D/3D
 - island shape

Influence of interface structure

- Attachment / Detachment
- Intralayer-diffusion
- Interlayer-diffusion
- Nucleation
Cu(100) in HCl: Adsorbate effects in kink dynamics

Cu(100) growth/dissolution in HCl solution
- at individual, well separated kink sites
- kink structure determined by Cl adlayer
 → growth/dissolution in form of $(\sqrt{2} \times \sqrt{2})$R45° rows
- high local growth/dissolution rates

0.01 M HCl
-0.23 V_{SCE}
10 images/s
slow motion: × 2

Cu(100) in HCl: Kinks in monolayer steps

Phase relation of c(2x2) at monolayer steps
→ structural anisotropy
→ anisotropic deposition/etching

0.01 M HCl, -0.23 V_{SCE}
10 images/s

Heteroepitaxy: metal nucleation

Ru / Au(111) Ni / Ag(111)

Ru / Au(111) Pt / HOPG
Au/Pt(111): heteroepitaxial growth

Effect of coadsorbates on surface transport

-0.20 V_{SCE}

0.00 V_{SCE}

0.26 V_{SCE}

0.50 V_{SCE}

Nucleation density Γ

\rightarrow Au surface mobility:

- increased at intermediate Cl coverage
- decreased at saturation Cl coverage

Au/Pt(111): heteroepitaxial growth

Stranski-Krastanov growth

Topics

Basics

• introduction into STM
• in-situ STM in electrochemical environment
• sample preparation

Applications

• electrode surface structure
• structure of adsorbate layers
• adsorbate dynamics
• growth processes
• surface phase transitions
Au / Pt(111): Potential-induced Dislocation Networks

- reversible, potential-induced phase transitions from (1x1) to uniaxial and hexagonal dislocation networks in Au mono- and double layer
- potential-dependent spacing of dislocations
Potential-induced reconstruction of Au(100)

0.01 M Na$_2$SO$_4$ + 1mM HCl
10 mV/s
Potential-induced reconstruction of Au(100)

- Solution: 0.01 M Na$_2$SO$_4$ + 1mM HCl
- Scan rate: 10 mV/s
- Display rate: x10

20 images/s
(1 min. video)

0.01 M Na$_2$SO$_4$
+ 1mM HCl
10 mV/s
Mobility of metal nanostructures

0.01 M Na₂SO₄ + 1mM HCl
-0.21 Vₑ
160 Å × 210 Å
20 images/s

Transversal mobility of "hex" strings

Model of "hex" string mobility: nucleation and 1d motion of highly mobile dislocations

Mobility of double strings

Static string distortions: $l_{\text{dist}} \geq 15$ Å
Mobility of reconstruction strings

Quasi-collective motion of “hex” strings:
- perpendicular to string direction
- along string direction
Mobility of Au Adatoms on ,,hex“ strings

Interaction Au adatom / “hex” string
→ 1d transport along string
→ channeling of Au\textsubscript{ad} to string end

$\Delta E_{1\times1} = 0.79 \text{ eV}$
$\Delta E_{\text{hex}} = 0.11 \text{ eV}$
$\Delta E_{1\times1 \rightarrow \text{hex}} = 0.66 \text{ eV}$
$\Delta E_{\text{hex} \rightarrow 1\times1} = 0.10 \text{ eV}$

DFT calculations: C. Ramirez, W. Schattke
Summary

How EC STM can help you to understand electrocatalysis/electrochemistry:

• clarify electrode structure:
 defects (steps, kinks), reconstructions, composition (→alloys)
• detect ordered adlayers
• get local spectroscopic information (difficult!)
• obtain insight into mechanisms of surface processes
• perform quantitative measurements on surface processes,
 e.g.: energy of surface defects, surface transport rates,
 phase transition kinetics

What can STM do for you?
Thanks to:

Tunay Tansel
Sujit Dora
Belinda Baisch
Ulrich Jung
Christian Haak
Klaus Krug
Andriy Taranovskyy
Frederik Golks
Anika Elsen
Miguel Labayen
Ahmed Ayyad
Koji Suto
Daniel Kaminski
Hiroyoshi Matsushima
Diego Raffa
Arnd Seeger
Matthias Greve
Jost Jakobs
Jochim Stettner
Bridget Murphy
Wanda Polewska
Sylvie Morin

Postdoc position available