Simulating the dynamics of a single polymer chain in solution: Lattice Boltzmann vs. Brownian Dynamics

Burkhard Dünweg
Max Planck Institute for Polymer Research
Mainz, Germany

Ulf D. Schiller
Institute of Complex Systems
Research Center Juelich, Germany

Hydrodynamic interactions

Navier–Stokes equation
solvent viscosity η

$$\langle \Delta \vec{r}_i \otimes \Delta \vec{r}_j \rangle = 2 \vec{D}_{ij} \Delta t$$

Oseen tensor:

$$\vec{D}_{ij} = k_B T \quad \mu_{ij} = \frac{k_B T}{8\pi \eta} \frac{1}{|\vec{r}_i - \vec{r}_j|} \left(1 + \hat{r}_{ij} \otimes \hat{r}_{ij} \right)$$
Brownian Dynamics (BD)

\[\vec{r}_i(t + \Delta t) = \vec{r}_i(t) + \Delta t \sum_j \vec{\mu}_{ij} F_j(t) + \Delta \vec{r}_i \]

\[\langle \Delta \vec{r}_i \otimes \Delta \vec{r}_j \rangle = 2 \vec{D}_{ij} \Delta t \]

- For many Brownian particles, the correlation matrix becomes huge and very unwieldy!
- Exact calculation of stochastic term via Cholesky decomposition: \(O(N^3) \)
- Approximate solution via matrix Chebyshev expansion: \(O(N^{2.25}) \)
- “P3M”–like methods (Banchio & Brady): \(O(N^{1.25 \ln N}) \) (complicated, not considered here)
- \(\Rightarrow \) In many cases, **explicit** momentum transport is desired (strictly \(O(N) \)!)
Lattice Boltzmann (LB)

- linearized Boltzmann equation (kinetic theory of gases)
- fully discretized
- sites \(\vec{r} \), lattice spacing \(a \)
- time \(t \), time step \(h \)

- \(\vec{c}_i \) small set of velocities
- \(\vec{c}_i h \) connects two sites
- \(n_i(\vec{r}, t) \): real number, mass density on site \(\vec{r} \) corresponding to velocity \(\vec{c}_i \)

\[
n_i(\vec{r} + \vec{c}_i h, t + h) = n_i^*(\vec{r}, t) = n_i(\vec{r}, t) + \Delta_i(\vec{r}, t)
\]
Conservation laws, symmetries

\[n_i(\vec{r} + \vec{c}_i h, t + h) = n_i^*(\vec{r}, t) = n_i(\vec{r}, t) + \Delta_i \{ n_i(\vec{r}, t) \} \]

\[\rho = \sum_i n_i \]

\[\vec{j} = \rho \vec{u} = \sum_i n_i \vec{c}_i \]

\[\sum_i \Delta_i = \sum_i \Delta_i \vec{c}_i = 0 \]

- mass conservation
- momentum conservation
- locality
- rotational symmetry (lattice!)
- Galilei invariance (finite number of velocities)
Lattice Boltzmann algorithm

- $\rho = \sum_i n_i$
- $\vec{j} = \sum_i n_i \vec{c}_i$, $\vec{u} = \vec{j}/\rho$
- $\vec{\Pi} = \sum_i n_i \vec{c}_i \otimes \vec{c}_i$
- $n_i^{eq}(\rho, \vec{u}) = w_i \rho \left(1 + \frac{\vec{u} \cdot \vec{c}_i}{c_s^2} + \frac{(\vec{u} \cdot \vec{c}_i)^2}{2c_s^4} - \frac{\vec{u}^2}{2c_s^2}\right)$, such that
- $\sum_i n_i^{eq} = \rho$
- $\sum_i n_i^{eq} \vec{c}_i = \vec{j}$
- $\sum_i n_i^{eq} \vec{c}_i \otimes \vec{c}_i = \rho c_s^2 + \rho \vec{u} \otimes \vec{u}$
- linear relaxation: $\Delta_i^{det} = \sum_j L_{ij}(n_j - n_j^{eq})$
- addition of noise: Δ_i^{stoch}
- streaming
Coupling lattice Boltzmann \leftrightarrow Molecular Dynamics

(P. Ahlrichs & B. D. 1999)

- particle system: stochastic Molecular Dynamics
- solvent: stochastic lattice Boltzmann
- dissipative coupling:

\[
\vec{F} = -\zeta (\vec{v} - \vec{u})
\]
- \vec{u}: interpolation from surroundings
- momentum conservation
- fluctuation–dissipation theorem

yields hydrodynamic interactions on large scales
"Bare" vs. effective friction constant

\(D_0 \): long–time diffusion coefficient

\(D_0 > k_B T / \zeta_{bare} \) (due to long time tail)

\(\vec{F} = \text{const.}, \vec{V} = \text{const.} \)

\[
\vec{V} = \frac{1}{\zeta_{bare}} \vec{F} + \vec{u}_{av}
\]

\[
\vec{u} \approx \frac{1}{8\pi \eta r} \left(\hat{1} + \hat{r} \otimes \hat{r} \right) \vec{F}
\]

\[
\vec{u}_{av} = \frac{1}{g \eta a} \vec{F}
\]

\[
\frac{1}{\zeta_{eff}} = \frac{1}{\zeta_{bare}} + \frac{1}{g \eta a}
\]

Stokes contribution from interpolation with range \(a\).

This regularizes the theory (no point particles in nature!)

\(\zeta_{bare} \): no physical meaning!

Match \(\zeta_{eff} \) with the BD friction coefficient!
Finite size effects

Study diffusion / sedimentation of a single object

- $L = \infty$: $u(r) \sim 1/r$
- $F \sim \eta R v = \eta R^2 (v/R)$
- area R^2, shear gradient v/R

- $L < \infty$: homogeneous background force (no net acceleration)
- backflow due to momentum conservation
- additional shear gradient v/L
- additional force
 $\eta R^2 (v/L) = \eta R v (R/L)$
- finite size effect $\sim R/L$
Brownian Dynamics vs. Lattice Boltzmann

<table>
<thead>
<tr>
<th></th>
<th>BD</th>
<th>LB</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ma = 0$</td>
<td>$Ma \ll 1$</td>
<td></td>
</tr>
<tr>
<td>$Sc = \infty$</td>
<td>$Sc \gg 1$</td>
<td></td>
</tr>
<tr>
<td>$Re = 0$</td>
<td>$Re \ll 1$</td>
<td></td>
</tr>
<tr>
<td>$Bo > 0$</td>
<td>$Bo > 0$</td>
<td></td>
</tr>
</tbody>
</table>

- Schmidt number $Sc = \nu/D$ (diffusive momentum transport vs. diffusive mass transport)
- Mach number $Ma = \nu/c$ (flow velocity vs. speed of sound; importance of fluid compressibility)
- Reynolds number $Re = \nu L/\nu$ (convective vs. diffusive momentum transport)
- “Boltzmann number” $Bo: \Delta x/x$ (thermal fluctuation vs. mean value, on the scale of an effective degree of freedom — depends on the degree of coarse–graining!)
 - Particle methods: $Bo = O(1)$
 - BD, discretized field theories: Bo freely adjustable!
Necessity of thermal fluctuations

- Ideal gas, temp. T, particle mass m_p, sound speed c_s:
 \[k_B T = m_p c_s^2 \]

- $c_s \sim a/h$ (a lattice spacing, h time step)
- c_s as small as possible

Example (water):

- mass density $\rho = 10^3 \text{kg/m}^3$
- sound speed realistic: $1.5 \times 10^3 \text{m/s}$
- sound speed artificial: $c_s = 10^2 \text{m/s}$
- temperature $T \approx 300K$, $k_B T = 4 \times 10^{-21} \text{J}$
- particle mass: $m_p = 4 \times 10^{-25} \text{kg}$

<table>
<thead>
<tr>
<th></th>
<th>macroscopic scale</th>
<th>molecular scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattice spacing</td>
<td>$a = 1 \text{mm}$</td>
<td>$a = 1 \text{nm}$</td>
</tr>
<tr>
<td>time step</td>
<td>$h = 10^{-5} \text{s}$</td>
<td>$h = 10^{-11} \text{s}$</td>
</tr>
<tr>
<td>mass of a site</td>
<td>$m_a = 10^{-6} \text{kg}$</td>
<td>$m_a = 10^{-24} \text{kg}$</td>
</tr>
<tr>
<td>“Boltzmann number”</td>
<td>$Bo = (m_p/m_a)^{1/2}$</td>
<td>$Bo = (m_p/m_a)^{1/2}$</td>
</tr>
<tr>
<td></td>
<td>$= 6 \times 10^{-10}$</td>
<td>$= 0.6$</td>
</tr>
</tbody>
</table>
Low Mach number physics

Low Mach number ⇒
compressibility does not matter ⇒
equation of state does not matter ⇒
choose ideal gas!
m\(_p\) particle mass:

\[
p = \frac{\rho}{m_p} k_B T
\]

\[
c_s^2 = \frac{\partial p}{\partial \rho} = \frac{1}{m_p} k_B T
\]

\[
p = \rho c_s^2
\]

\[
k_B T = m_p c_s^2
\]
Occupation numbers in local thermal equilibrium
(Phys. Rev. E 76, 036704 (2007))

- ν_i # of LB particles in velocity bin i
- contact with a large reservoir
- Poisson + constraints of conserved mass and momentum:

$$P(\{\nu_i\}) \propto \left(\prod_i \frac{\bar{\nu}_i \nu_i}{\nu_i!} \exp(-\bar{\nu}_i)\right)^n \delta\left(\sum_i \mu \nu_i - \rho\right) \delta\left(\sum_i \mu \bar{c}_i \nu_i - j\right)$$

- m_p mass of an LB particle
- $\mu = m_p/a^3$ \Rightarrow $n_i = \mu \nu_i$ and $\mu \bar{\nu}_i = w_i \rho$
- n_i^{eq} via maximization of P
- saddle point approximation around n_i^{eq}
Modes

\[n_{i}^{\text{neq}} = n_{i} - n_{i}^{\text{eq}} \]

theory of fluctuations \(\Rightarrow \)

\[\langle n_{i}^{\text{neq}}^2 \rangle = w_{i} \rho \mu \]

with \(\mu = m_{p}/a^{3} = k_{B} T/(a^{3} c_{s}^{2}) \Rightarrow \) normalization:

\[\hat{n}_{i}^{\text{neq}} = \frac{n_{i}^{\text{neq}}}{\sqrt{w_{i} \rho \mu}} \]

modes via orthonormal transformation \(\hat{e}_{ki} \):

\[\hat{m}_{k}^{\text{neq}} = \sum_{i} \hat{e}_{ki} \hat{n}_{i}^{\text{neq}} \]

- \(m_{0} \propto \rho \)
- \((m_{1}, m_{2}, m_{3}) \propto \vec{j} \)
- \(m_{4} \in \text{span}(\rho, \Pi_{\alpha\alpha}) \) (bulk stress)
- \(\text{span}(m_{5}, \ldots, m_{9}) = \text{span}(\bar{\Pi}_{\alpha\beta}) \) (5 shear stresses)
- kinetic (or “ghost”) modes \(m_{10}, \ldots, m_{18} \)
Mode update: Relaxation and noise

\[P \left(\{ \hat{m}_k^{neq} \} \right) \propto \exp \left(-\frac{1}{2} \sum_{k \geq 4} \hat{m}_k^{neq^2} \right) \]

\[\hat{m}_k^{*neq} = \gamma_k \hat{m}_k^{neq} + (1 - \gamma_k^2)^{1/2} r_k \]

\(r_k \) Gaussian with

\[\langle r_k \rangle = 0 \quad \langle r_k^2 \rangle = 1 \]

satisfies detailed balance!

- \(\gamma_4 \rightarrow \) bulk viscosity
- \(\gamma_5 = \ldots = \gamma_9 \rightarrow \) shear viscosity
- \(\gamma_{10} = \ldots = \gamma_{18} = 0 \) easiest choice
Provide *quantitative* comparison between BD and LB:

- Results on static and dynamic properties
- Efficiency
- Standard benchmark system: Single polymer chain in solvent
Static structure factor

\[S(k) = \frac{1}{N} \sum_{ij} \left\langle \exp \left[i \mathbf{k} \cdot (\mathbf{r}_i - \mathbf{r}_j) \right] \right\rangle \propto k^{-1/\nu} \]

for \(R^{-1} \ll k \ll a^{-1} \)
Lattice Boltzmann vs. Brownian Dynamics
B. Dünweg
U. Schiller
Hydrodynamic interactions
Brownian Dynamics
Lattice Boltzmann
Fluctuations
BD vs. LB
Results
Summary

Diffusion constant

![Graph showing diffusion constant vs. inverse length](image-url)

- \(\bar{D}_{cm} \)
- \(1/L \)
- \(x 10^{-3} \)
Rouse modes

\[\vec{X}_p = \frac{1}{N} \sum_{n=1}^{N} \vec{r}_n \cos \left(\frac{p \pi N}{N} \left(n - \frac{1}{2} \right) \right) \]
Rouse modes: Weak finite size effects

- internal forces cancel in leading order
- \Rightarrow finite size effect L^{-3}
Scaling of dynamic structure factor

$\frac{k}{\nu} S(k, t)$

$k^2 t^{2/z}, z = 3.7$

$k^2 t^{2/z}, z = 3$

$k^2 t^{2/z}, z = 2.75$

$\frac{k}{\nu} S(k, t)$
CPU scaling: Single polymer chain

\[R \sim a N^\nu \quad \nu \approx 0.59 \]

- BD: \(N^{2.25} \)
- LB: \(N^{3\nu} \approx N^{1.8} \) (but with unfavorable prefactor)
 - box size \(L \)
 - \(L \sim a N^\nu \)
 - \(L^3 \sim a^3 N^{3\nu} \)

- For typical chain lengths, BD is nearly two orders of magnitude faster
LB vs. BD: Comparison of efficiency

- system: single polymer chain, good solvent, thermal equilibrium
- BD: infinite system
- LB+MD: 3 boxes with periodic boundary conditions, size L, extrapolation $L \rightarrow \infty$

- BD: CPU $\propto N^{2.25}$
- LB+MD: $\sqrt{\langle R^2 \rangle}/L = \text{const.}$, CPU $\propto L^3 \propto R^3 \propto N^{3\nu} \propto N^{1.8}$
CPU scaling: Semidilute solutions

- M chains of length N in box of size L; blob picture:
 - "blob size" ξ
 - $\xi \sim an^\nu$
 - $R \sim \xi (N/n)^{1/2}$
 - $L \sim R$
 - $L^3/\xi^3 \sim M(N/n)$
 - $M \sim (N/n)^{1/2}$

- LB effort: slightly decreased (chain shrinkage) by factor $(n/N)^{3\nu-3/2} \approx 1/3$ for $N/n = 30$
- BD effort: increased by factor $M^{2.25} \sim (N/n)^{1.125} \approx 50$ (but HI with periodic images)
- BD can only compete (if at all) by using FFT acceleration
Summary

- Hydrodynamic interactions via dissipative coupling
 MD / LB: Simple, versatile, efficient
- Single–chain polymer dynamics: BD more efficient
- *Quantitative* agreement between BD and LB+MD
Chebyshev approximation

Polynomial approximation:

\[
\frac{\leftrightarrow 1/2}{D} \approx \sum_{k=0}^{L} a_k \leftrightarrow D
\]

\[
\frac{\leftrightarrow 1/2}{\vec{R}} \approx \sum_{k=0}^{L} a_k \leftrightarrow D \vec{R}
\]

\[
\frac{\leftrightarrow k}{D \vec{R}} = \frac{\leftrightarrow k-1}{DD \vec{R}}
\]

- Each term: \(O(N^2)\)
- Number of needed terms: Typically \(O(N^{0.25})\)

Coefficients \(a_k\) (pre-computed) depend on:

- \(L\)th order Chebyshev approximation to \(x^{1/2}\)
- \(\lambda_{\text{min}}, \lambda_{\text{max}}\), where all eigenvalues of \(\vec{D}\) obey \(\lambda_{\text{min}} \leq \lambda_i \leq \lambda_{\text{max}}\)
Equations of motion, continuum limit

\[\vec{u}_i \equiv \int d^3\vec{r} \sigma_i(\vec{r}_i, \vec{r}) \vec{u}(\vec{r}) \]

\[
\frac{d}{dt} \vec{r}_i = \frac{1}{m_i} \vec{p}_i
\]

\[
\frac{d}{dt} \vec{p}_i = \vec{F}_i - \zeta_i \left(\frac{1}{m_i} \vec{p}_i - \vec{u}_i \right) + \vec{f}_i
\]

\[
\partial_t \rho + \partial_\alpha j_\alpha = 0
\]

\[
\partial_t j_\alpha + \partial_\beta \left(p \delta_{\alpha\beta} + \rho u_\alpha u_\beta \right) = \partial_\beta \eta_{\alpha\beta\gamma\delta} \partial_\gamma u_\delta + \partial_\beta Q_{\alpha\beta}
\]

\[
+ \sum_i \left[\zeta_i \left(\frac{1}{m_i} p_{i\alpha} - u_{i\alpha} \right) - f_{i\alpha} \right] \sigma_i(\vec{r}_i, \vec{r})
\]
Fluctuation–dissipation relations

\[\langle f_{i\alpha} \rangle = 0 \]
\[\langle Q_{\alpha\beta} \rangle = 0 \]
\[\langle f_{i\alpha}(t) f_{j\beta}(t') \rangle = 2k_B T \zeta_i \delta_{ij} \delta_{\alpha\beta} \delta(t - t') \]
\[\langle Q_{\alpha\beta}(\vec{r}, t) Q_{\gamma\delta}(\vec{r}', t') \rangle = 2k_B T \eta_{\alpha\beta\gamma\delta} \delta(\vec{r} - \vec{r}') \delta(t - t') \]
Chapman–Enskog expansion

Multi–time scale analysis: $\varepsilon \ll 1$ (e. g. $\varepsilon = 10^{-3}$):

$$\vec{r}_1 = \varepsilon \vec{r}$$

interpretation: “coarse–grained ruler”:
$1\mu m$ instead of 978nm

$$t_1 = \varepsilon t$$

interpretation: “coarse–grained clock”:
$1ns$ instead of 837ps

$$t_2 = \varepsilon^2 t$$

interpretation: “yet more coarse–grained clock”:
$1\mu s$ instead of 976ns572ps

- t_1 to capture wave–like phenomena
- t_2 to capture diffusive phenomena
- location in space and time: read off \vec{r}_1, t_1, t_2

Macroscopic limit is obtained for $\varepsilon \to 0$.
\[\vec{r} = \varepsilon^{-1}\vec{r}_1 \]

\(\vec{r}_1 \) fixed \(\Rightarrow \vec{r} \) varies with \(\varepsilon \) \(\Rightarrow \)

\[
\begin{align*}
n_i & = n_i^{(0)} + \varepsilon n_i^{(1)} + O(\varepsilon^2) \\
\Delta_i & = \Delta_i^{(0)} + \varepsilon \Delta_i^{(1)} + \varepsilon^2 \Delta_i^{(2)} + O(\varepsilon^3)
\end{align*}
\]

LBE:

\[
n_i(\vec{r}_1 + \varepsilon \vec{c}_i h, t_1 + \varepsilon h, t_2 + \varepsilon^2 h) - n_i(\vec{r}_1, t_1, t_2) = \Delta_i(\vec{r}_1, t_1, t_2)
\]

- Taylor expansion wrt \(\varepsilon \)
- truncate after 2nd order
- hierarchy of LBEs
- moments: \(\sum_i \ldots, \sum_i \vec{c}_i \ldots, \sum_i \vec{c}_i \otimes \vec{c}_i \ldots \)
- hierarchy of moment equations
- transform back to \(\vec{r}, t \)
- \(\equiv \) (fluctuating) Navier–Stokes
Zimm model

\[\langle \Delta \vec{r}_i \otimes \Delta \vec{r}_j \rangle \sim \frac{k_B T}{\eta} \frac{1}{|\vec{r}_i - \vec{r}_j|} \]

\[D \propto \frac{1}{R} \quad \tau_R \propto \frac{R^2}{D} \propto R^3 \quad z = 3 \]
Dynamic scaling

monomer mean square displacement:

\[\log \Delta r^2 \]

\[R^2 \]

\[a^2 \]

\[\log t \]

\[\tau_a \]

\[\tau_R \sim R^z \]

dynamic structure factor:

\[S(k, t) = \frac{1}{N} \sum_{ij} \left\langle \exp \left[i \vec{k} \cdot (\vec{r}_i(t) - \vec{r}_j(0)) \right] \right\rangle \]

\[S(k, t) = k^{-1/\nu} f \left(k^2 t^{2/z} \right) \]
Semidilute solution: Mean square displacements: Crossover Zimm → Rouse

\[\langle \Delta r^2 \rangle / (At^{2/3}) \]

- Log-log plot showing the crossover from Zimm to Rouse behavior.
- "Dilute" behavior at low concentrations (Zimm, \(z=3 \)).
- "Concentrated" behavior at high concentrations (Rouse, \(z=4 \)).

\[<\Delta r^2>/At^{2/3} \]

- Parameters: \(c=0.231 \), \(c=0.134 \), \(c=0.0734 \).

- Scale: \(t/c^{2.3} \sim t/\tau_{\xi} \).
Dynamic single–chain structure factor

- “incomplete screening” is a short–time effect
 (P. Ahlrichs, R. Everaers, B. D. 2001)
- screening results from chain–chain collisions
- waiting time = blob relaxation time
Polymer motion in a turbulent flow (preliminary)

- multiscale approach:
- DNS of homogeneous turbulence (spectral code, J. Schumacher)
- flow field around tracer particles → initial and boundary conditions for LB+MD
- no back–coupling!

\[
\frac{d\vec{x}_L}{dt} = \bar{u}(\vec{x}_L(x_0,0), t)
\]
Chain stretching

\[\frac{l_C}{l_K} = 1.72 \]

\[\frac{\tau_Z}{\tau_K} = 11.6 \]
Histogram end–to–end distance

- w/o flow
- L=1, Wi=10
- L=2, Wi=40

P(R_{ee}) vs. R_{ee}/l_C
Consistency spectral code – LB

- vorticity vs. time
- solid lines: spectral code
- dotted lines: LB